1.6.1 Binomial Expansion

In this topic we will learn how to:

  • use the expansion of \left(a + b\right)^{n}, where n is a positive integer

We can expand \left(a + b\right)^{n} using the formula below,
\left(a + b\right)^{n} = a^{n} + \begin{pmatrix}n \\ 1\end{pmatrix}a^{n - 1}b + \begin{pmatrix}n \\ 2\end{pmatrix}a^{n - 2}b^{2} + \begin{pmatrix}n \\ 3\end{pmatrix}a^{n - 3}b^{3}… + b^{n}Where n is a positive integer.

Note: \begin{pmatrix}n \ r\end{pmatrix} represents ^{n}C{r}, the function is available on your calculator, possibly as nCr.

Let’s look at some past paper questions on binomial expansion.

1. (a) Expand \left(1 + a\right)^{5} in ascending powers of a up to and including the term in a^{3}. (9709/13/M/J/20 number 4)

Use the formula for binomial expansion,
\left(a + b\right)^{n} = a^{n} + \begin{pmatrix}n \\ 1\end{pmatrix}a^{n - 1}b + \begin{pmatrix}n \\ 2\end{pmatrix}a^{n - 2}b^{2} + \begin{pmatrix}n \\ 3\end{pmatrix}a^{n - 3}b^{3}... + b^{n}\left(1 + a\right)^{5} = 1^{n} + \begin{pmatrix}5 \\ 1\end{pmatrix}\left(1\right)^{4}\left(a\right) + \begin{pmatrix}5 \\ 2\end{pmatrix}\left(1\right)^{3}\left(a\right)^{2} + \begin{pmatrix}5 \\ 3\end{pmatrix}\left(1\right)^{2}\left(a\right)^{3}\left(1 + a\right)^{5} = 1 + 5a + 10a^{2} + 10a^{3}Therefore, the final answer is,
1 + 5a + 10a^{2} + 10a^{3}(b) Hence expand [1 + \left(x + x^{2}\right)]^{5} in ascending powers of x up to and including the term in x^{3}, simplifying your answer.

Notice how this is very similar to the expression above. a has been replaced with x + x^{2},
\left(1 + \textcolor{#2192ff}{a}\right)^{5}[1 + \textcolor{#2192ff}{\left(x + x^{2}\right)}]^{5}In the expansion of \left(1 + a\right)^{5}, substitute a with x + x^{2},
1 + 5\textcolor{#2192ff}{a} + 10\textcolor{#2192ff}{a}^{2} + 10\textcolor{#2192ff}{a}^{3}1 + 5\left(\textcolor{#2192ff}{x + x^{2}}\right) + 10\left(\textcolor{#2192ff}{x + x^{2}}\right)^{2} + 10\left(\textcolor{#2192ff}{x + x^{2}}\right)^{3}1 + 5x + 5x^{2} + 10\left(x + x^{2}\right)^{2} + 10\left(x + x^{2}\right)^{3}Expand the quadratic and simplify,
1 + 5x + 5x^{2} + 10\left(x^{2} + 2x^{3} + x^{4}\right) + 10\left(x + x^{2}\right)^{3}1 + 5x + 5x^{2} + 10x^{2} + 20x^{3} + 10x^{4} + 10\left(x + x^{2}\right)^{3}1 + 5x + 15x^{2} + 20x^{3} + 10x^{4} + 10\left(x + x^{2}\right)^{3}Disregard the term in x^{4},
1 + 5x + 15x^{2} + 20x^{3} + 10\left(x + x^{2}\right)^{3}Expand the cubic, disregarding any terms with a power in x higher than 3,
1 + 5x + 15x^{2} + 20x^{3} + 10x^{3}Note: Only the first term in the cubic has a power in x of 3 or lower.

Simplify,
1 + 5x + 15x^{2} + 30x^{3}Therefore, the final answer is,
1 + 5x + 15x^{2} + 30x^{3}2. The coefficient of x^{3} in the expansion of \left(1 + kx\right)\left(1 - 2x\right)^{5} is 20. Find the value of the constant k. (9709/12/O/N/20 number 1)
\left(1 + kx\right)\left(1 - 2x\right)^{5}Let’s start by expanding \left(1 - 2x\right)^{5} up to and including the term in x^{3},
\left(1 - 2x\right)^{5}\left(a + b\right)^{n} = a^{n} + \begin{pmatrix}n \\ 1\end{pmatrix}a^{n - 1}b + \begin{pmatrix}n \\ 2\end{pmatrix}a^{n - 2}b^{2} + \begin{pmatrix}n \\ 3\end{pmatrix}a^{n - 3}b^{3}... + b^{n}\left(1 - 2x\right)^{5} = 1^{5} + \begin{pmatrix}5 \\ 1\end{pmatrix}\left(1^{4}\right)\left(-2x\right) + \begin{pmatrix}5 \\ 2\end{pmatrix}\left(1\right)^{3}\left(-2x\right)^{2} + \begin{pmatrix}5 \\ 3\end{pmatrix}\left(1\right)^{2}\left(-2x\right)^{3}\left(1 - 2x\right)^{5} = 1 - 10x + 40x^{2} - 80x^{3}Substitute \left(1 - 2x\right)^{5} with the expansion,
\left(1 + kx\right)\textcolor{#2192ff}{\left(1 - 2x\right)^{5}}\left(1 + kx\right)\textcolor{#2192ff}{\left(1 - 10x + 40x^{2} - 80x^{3}\right)}Identify the terms that give a term in x^{3} when multiplied and add them together,
\left(1 \times \left(-80x^{3}\right)\right) + \left(kx \times 40x^{2}\right)- 80x^{3} + 40kx^{3}\left(-80 + 40k\right)x^{3}Note: If you’re struggling to understand this, fully expand the two brackets together and pick out the terms in x^{3}.

Since the coefficient of x^{3} is 20, equate -80 + 40k to 20,
-80 + 40k = 2040k = 80 + 2040k = 100k = \frac{5}{2}Therefore, the final answer is,
k = \frac{5}{2}3. (a) Find the coefficient of x^{2} in the expansion of \left(x - \frac{2}{x}\right)^{6}. ( 9709/12/M/J/20 number 1)
\left(\textcolor{#2192ff}{x}\ \textcolor{#0f0}{-\ \frac{2}{x}}\right)^{6}For us to get a term in x^{2}, \textcolor{#2192ff}{a} has to be to the power 4 and \textcolor{#0f0}{b} to the power 2, so that they cancel out to give a term in x^{2}, hence,
Note: Remember the powers of a and b should always add up to n.
\begin{pmatrix} n \\ 2 \end{pmatrix} \times \textcolor{#2192ff}{a}^{4} \times \textcolor{#0f0}{b}^{2}\begin{pmatrix} 6 \\ 2 \end{pmatrix} \times \textcolor{#2192ff}{x}^{4} \times \left(\textcolor{#0f0}{-\frac{2}{x}}\right)^{2}15x^{4}\left(\frac{4}{x^{2}}\right)60x^{2}Therefore, the coefficient of x^{2} is,
60(b) Find the coefficient of x^{2} in the expansion of \left(2 + 3x^{2}\right)\left(x - \frac{2}{x}\right)^{6}.
\left(2 + 3x^{2}\right)\left(x - \frac{2}{x}\right)^{6}\left(\textcolor{#2192ff}{x}\ \textcolor{#0f0}{-\ \frac{2}{x}}\right)^{6}We have to start by finding the term independent of x in the expansion of \left(x - \frac{2}{x}\right)^{6}. For us to get a term independent of x, the x in \textcolor{#2192ff}{a} and \textcolor{#0f0}{b} should cancel out when they multiply, therefore, \textcolor{#2192ff}{a} should be to the power 3 and \textcolor{#0f0}{b} should be to the power 3,
\begin{pmatrix} n \\ 3\end{pmatrix} \times \textcolor{#2192ff}{a}^{3} \times \textcolor{#0f0}{b}^{3}\begin{pmatrix} 6 \\ 3\end{pmatrix} \times \textcolor{#2192ff}{x}^{3} \times \left(\textcolor{#0f0}{-\frac{2}{x}}\right)^{3}20x^{3}\left(-\frac{8}{x^{3}}\right)-160Now substitute \left(x - \frac{2}{x}\right)^{6} with the term independent of x and the term in x^{2},
\left(2 + 3x^{2}\right)\textcolor{#2192ff}{\left(x - \frac{2}{x}\right)^{6}}\left(2 + 3x^{2}\right)\textcolor{#2192ff}{\left(60x^{2} - 160\right)}Identify the terms that give you a term in x^{2} when multiplied and add them together,
2\left(60x^{2}\right) + 3x^{2}\left(-160\right)120x^{2} - 480x^{2}-360x^{2}Therefore, the coefficient of x^{2} is,
-360