1.7.5 Locating and Determining the Nature of Stationary Points

In this topic we will learn how to:

  • locate stationary points and determine their nature using the second derivative

Stationary Points\textbf{\large\textcolor{gray}{Stationary Points}}A stationary point is a point on the graph with a gradient of 00. This means that,
dydx=0\frac{dy}{dx} = 0To determine the nature of a stationary point i.e whether its a maximum point or a minimum point, we have to find the second derivative. If the second derivative is negative, then it is a maximum point. If the second derivative is positive, it is a minimum point.

Let’s look at some past paper questions.

1. A curve has equation ff which is defined by f(x)=23x37x+4x+2f(x) = \frac{2}{3}x^{3} - 7x + \frac{4}{x} + 2, and it is given that f(x)=2x274x2f'(x) = 2x^{2} - 7 - \frac{4}{x^{2}}.

(a) Find the coordinates of the stationary point on the curve.
f(x)=2x274x2f'(x) = 2x^{2} - 7 - \frac{4}{x^{2}}f(x)f'(x) represents the derivative of f(x)f(x) i.e it is the same as dydx\frac{dy}{dx}. Therefore, since we already have the gradient function let’s equate it to 00,
2x274x2=02x^{2} - 7 - \frac{4}{x^{2}} = 0Multiply through by x2x^{2},
2x47x24=02x^{4} - 7x^{2} - 4 = 0Recognise and solve the hidden quadratic,
2x47x24=02x^{4} - 7x^{2} - 4 = 02(x2)27x24=02(x^{2})^{2} - 7x^{2} - 4 = 0Let y=x2\textbf{Let } y = x^{2}2y27y4=02y^{2} - 7y - 4 = 0(2y+1)(y4)=0(2y + 1)(y - 4) = 02y+1=0        y4=02y + 1 = 0\ \ \ \ \ \ \ \ y - 4 = 0y=12        y=4y = -\frac{1}{2}\ \ \ \ \ \ \ \ y = 4y=x2y = x^{2}x2=12        x2=4x^{2} = -\frac{1}{2}\ \ \ \ \ \ \ \ x^{2} = 4x2=12        x2=±4\sqrt{x^{2}} = \sqrt{-\frac{1}{2}}\ \ \ \ \ \ \ \ \sqrt{x^{2}} = \pm\sqrt{4}x=no solutions        x=±2x = \textmd{no solutions}\ \ \ \ \ \ \ \ x = \pm 2Note: The square root of a negative number has no real roots, hence no solutions for x=12x = \sqrt{-\frac{1}{2}}.

Now that we have the xx-coordinates, let’s find the yy-coordinates by substituting into f(x)f(x),
f(x)=23x37x+4x+2f(x) = \frac{2}{3}x^{3} - 7x + \frac{4}{x} + 2at x=2        at x=2\textmd{at } x = -2\ \ \ \ \ \ \ \ \textmd{at } x = 2f(2)=23(2)37(2)+4(2)+2        f(2)=23(2)37(2)+4(2)+2f(-2) = \frac{2}{3}(-2)^{3} - 7(-2) + \frac{4}{(-2)} + 2\ \ \ \ \ \ \ \ f(2) = \frac{2}{3}(2)^{3} - 7(2) + \frac{4}{(2)} + 2f(2)=263        f(2)=143f(-2) = \frac{26}{3}\ \ \ \ \ \ \ \ f(2) = -\frac{14}{3}Therefore, the coordinates of the stationary points are,
(2,263)(2,143)\left(-2, \frac{26}{3}\right) \left(2, -\frac{14}{3}\right)(b) Find f(x)f''(x).
f(x)=2x274x2f'(x) = 2x^{2} - 7 - \frac{4}{x^{2}}Differentiate f(x)f'(x),
f(x)=2x274x2f'(x) = 2x^{2} - 7 - 4x^{-2}f(x)=4x(4)(2)x3f''(x) = 4x - (4)(-2)x^{-3}f(x)=4x+8x3f''(x) = 4x + 8x^{-3}Therefore, the final answer is,
f(x)=4x+8x3f''(x) = 4x + 8x^{-3}(c) Hence, or otherwise, determine the nature of the stationary points.

To determine the nature of the stationary points, we use the second derivative,
f(x)=4x+8x3f''(x) = 4x + 8x^{-3}Substitute the xx-coordinates at the stationary points,
at (2,263)        at (2,143)\textmd{at } \left(-2, \frac{26}{3}\right)\ \ \ \ \ \ \ \ \textmd{at } \left(2, -\frac{14}{3}\right)f(2)=4(2)+8(2)3        f(2)=4(2)+8(2)3f''(-2) = 4(-2) + 8(-2)^{-3}\ \ \ \ \ \ \ \ f''(2) = 4(2) + 8(2)^{-3}f(2)=9        f(2)=9f''(-2) = -9\ \ \ \ \ \ \ \ f''(2) = 9From the information above we can tell that,
f(2)<0 hence maximum pointf''(-2) < 0 \textmd{ hence maximum point}f(2)>0 hence minimum pointf''(2) > 0 \textmd{ hence minimum point}Therefore, the final answer is,
At (2,263)f(x)<0, hence it is a maximum point.\textmd{At }\left(-2, \frac{26}{3}\right)\textmd{, }f''(x) < 0\textmd{, hence it is a maximum point.}At (2,143)f(x)>0, hence it is a minimum point.\textmd{At }\left(2, -\frac{14}{3}\right)\textmd{, }f''(x) > 0\textmd{, hence it is a minimum point.}2. The equation of a curve is y=(32x)3+24xy = (3 - 2x)^{3} + 24x.

(a) Find the expressions for dydx\frac{dy}{dx} and d2ydx2\frac{d^{2}y}{dx^{2}}.

Let’s start by finding dydx\frac{dy}{dx},
y=(32x)3+24xy = (3 - 2x)^{3} + 24xdydx=(3)(2)(32x)2+24\frac{dy}{dx} = (3)(-2)(3 - 2x)^{2} + 24dydx=6(32x)2+24\frac{dy}{dx} = -6(3 - 2x)^{2} + 24Now let’s find d2ydx2\frac{d^{2}y}{dx^{2}},
dydx=6(32x)2+24\frac{dy}{dx} = -6(3 - 2x)^{2} + 24d2ydx2=(6)(2)(32x)\frac{d^{2}y}{dx^{2}} = (-6)(2)(3 - 2x)d2ydx2=12(32x)\frac{d^{2}y}{dx^{2}} = -12(3 - 2x)d2ydx2=36+24x\frac{d^{2}y}{dx^{2}} = -36 + 24xTherefore, the final answer is,
dydx=6(32x)2+24        d2ydx2=36+24x\frac{dy}{dx} = -6(3 - 2x)^{2} + 24\ \ \ \ \ \ \ \ \frac{d^{2}y}{dx^{2}} = -36 + 24x(b) Find the coordinates of each of the stationary point on the curve.

dydx=6(32x)2+24\frac{dy}{dx} = -6(3 - 2x)^{2} + 24At a stationary point dydx=0\frac{dy}{dx} = 0,
6(32x)2+24=0-6(3 - 2x)^{2} + 24 = 0Solve for xx,
6(32x)2=246(3 - 2x)^{2} = 24Divide both sides by 66,
(32x)2=246(3 - 2x)^{2} = \frac{24}{6}(32x)2=4(3 - 2x)^{2} = 4Take the square root of both sides,
(32x)2=±4\sqrt{(3 - 2x)^{2}} = \pm \sqrt{4}32x=±23 - 2x = \pm 2Make xx the subject of the formula,
32x=±23 - 2x = \pm 22x=3±22x = 3 \pm 2x=32±22x = \frac{3}{2} \pm \frac{2}{2}x=32±1x = \frac{3}{2} \pm 1x=321        x=32+1x = \frac{3}{2} - 1\ \ \ \ \ \ \ \ x = \frac{3}{2} + 1x=12        x=52x = \frac{1}{2}\ \ \ \ \ \ \ \ x = \frac{5}{2}Substitute the xx-coordinates into the original equation to find the yy-coordinates,
y=(32x)3+24xy = (3 - 2x)^{3} + 24xat x=12        at x=52\textmd{at } x = \frac{1}{2}\ \ \ \ \ \ \ \ \textmd{at } x = \frac{5}{2}y=(32(12))3+24(12)        y=(32(52))3+24(52)y = \left(3 - 2\left(\frac{1}{2}\right)\right)^{3} + 24\left(\frac{1}{2}\right)\ \ \ \ \ \ \ \ y = \left(3 - 2\left(\frac{5}{2}\right)\right)^{3} + 24\left(\frac{5}{2}\right)y=20        y=52y = 20\ \ \ \ \ \ \ \ y = 52Therefore, the coordinates of the stationary points are,
(12,20)(52,52)\left(\frac{1}{2}, 20\right) \left(\frac{5}{2}, 52\right)(c) Determine the nature of the stationary points.

To determine the nature of the stationary points, we use the second derivative,
d2ydx2=36+24x\frac{d^{2}y}{dx^{2}} = -36 + 24xSubstitute the xx-coordinates of the stationary points into the second derivative,
d2ydx2=36+24x\frac{d^{2}y}{dx^{2}} = -36 + 24xat (12,20)        at (52,52)\textmd{at } \left(\frac{1}{2}, 20\right)\ \ \ \ \ \ \ \ \textmd{at } \left(\frac{5}{2}, 52\right)d2ydx2=36+24(12)        d2ydx2=36+24(52)\frac{d^{2}y}{dx^{2}} = -36 + 24\left(\frac{1}{2}\right)\ \ \ \ \ \ \ \ \frac{d^{2}y}{dx^{2}} = -36 + 24\left(\frac{5}{2}\right)d2ydx2=24        d2ydx2=24\frac{d^{2}y}{dx^{2}} = -24\ \ \ \ \ \ \ \ \frac{d^{2}y}{dx^{2}} = 24d2ydx2<0 hence maximum point        d2ydx2>0 hence minimum point\frac{d^{2}y}{dx^{2}} < 0 \textmd{ hence maximum point}\ \ \ \ \ \ \ \ \frac{d^{2}y}{dx^{2}} > 0 \textmd{ hence minimum point}Therefore, the final answer is,
At (12,20)d2ydx2<0, hence it is a maximum point.\textmd{At }\left(\frac{1}{2}, 20\right)\textmd{, }\frac{d^{2}y}{dx^{2}} < 0\textmd{, hence it is a maximum point.}At (12,20)d2ydx2>0, hence it is a minimum point.\textmd{At }\left(\frac{1}{2}, 20\right)\textmd{, }\frac{d^{2}y}{dx^{2}} > 0\textmd{, hence it is a minimum point.}