1.7.5 Locating and Determining the Nature of Stationary Points
In this topic we will learn how to:
- locate stationary points and determine their nature using the second derivative
\textbf{\large\textcolor{gray}{Stationary Points}}A stationary point is a point on the graph with a gradient of 0. This means that,
\frac{dy}{dx} = 0To determine the nature of a stationary point i.e whether its a maximum point or a minimum point, we have to find the second derivative. If the second derivative is negative, then it is a maximum point. If the second derivative is positive, it is a minimum point.
Let’s look at some past paper questions.
1. A curve has equation f which is defined by f(x) = \frac{2}{3}x^{3} - 7x + \frac{4}{x} + 2, and it is given that f'(x) = 2x^{2} - 7 - \frac{4}{x^{2}}.
(a) Find the coordinates of the stationary point on the curve.
f'(x) = 2x^{2} - 7 - \frac{4}{x^{2}}f'(x) represents the derivative of f(x) i.e it is the same as \frac{dy}{dx}. Therefore, since we already have the gradient function let’s equate it to 0,
2x^{2} - 7 - \frac{4}{x^{2}} = 0Multiply through by x^{2},
2x^{4} - 7x^{2} - 4 = 0Recognise and solve the hidden quadratic,
2x^{4} - 7x^{2} - 4 = 02(x^{2})^{2} - 7x^{2} - 4 = 0\textbf{Let } y = x^{2}2y^{2} - 7y - 4 = 0(2y + 1)(y - 4) = 02y + 1 = 0\ \ \ \ \ \ \ \ y - 4 = 0y = -\frac{1}{2}\ \ \ \ \ \ \ \ y = 4y = x^{2}x^{2} = -\frac{1}{2}\ \ \ \ \ \ \ \ x^{2} = 4\sqrt{x^{2}} = \sqrt{-\frac{1}{2}}\ \ \ \ \ \ \ \ \sqrt{x^{2}} = \pm\sqrt{4}x = \textmd{no solutions}\ \ \ \ \ \ \ \ x = \pm 2Note: The square root of a negative number has no real roots, hence no solutions for x = \sqrt{-\frac{1}{2}}.
Now that we have the x-coordinates, let’s find the y-coordinates by substituting into f(x),
f(x) = \frac{2}{3}x^{3} - 7x + \frac{4}{x} + 2\textmd{at } x = -2\ \ \ \ \ \ \ \ \textmd{at } x = 2f(-2) = \frac{2}{3}(-2)^{3} - 7(-2) + \frac{4}{(-2)} + 2\ \ \ \ \ \ \ \ f(2) = \frac{2}{3}(2)^{3} - 7(2) + \frac{4}{(2)} + 2f(-2) = \frac{26}{3}\ \ \ \ \ \ \ \ f(2) = -\frac{14}{3}Therefore, the coordinates of the stationary points are,
\left(-2, \frac{26}{3}\right) \left(2, -\frac{14}{3}\right)(b) Find f''(x).
f'(x) = 2x^{2} - 7 - \frac{4}{x^{2}}Differentiate f'(x),
f'(x) = 2x^{2} - 7 - 4x^{-2}f''(x) = 4x - (4)(-2)x^{-3}f''(x) = 4x + 8x^{-3}Therefore, the final answer is,
f''(x) = 4x + 8x^{-3}(c) Hence, or otherwise, determine the nature of the stationary points.
To determine the nature of the stationary points, we use the second derivative,
f''(x) = 4x + 8x^{-3}Substitute the x-coordinates at the stationary points,
\textmd{at } \left(-2, \frac{26}{3}\right)\ \ \ \ \ \ \ \ \textmd{at } \left(2, -\frac{14}{3}\right)f''(-2) = 4(-2) + 8(-2)^{-3}\ \ \ \ \ \ \ \ f''(2) = 4(2) + 8(2)^{-3}f''(-2) = -9\ \ \ \ \ \ \ \ f''(2) = 9From the information above we can tell that,
f''(-2) < 0 \textmd{ hence maximum point}f''(2) > 0 \textmd{ hence minimum point}Therefore, the final answer is,
\textmd{At }\left(-2, \frac{26}{3}\right)\textmd{, }f''(x) < 0\textmd{, hence it is a maximum point.}\textmd{At }\left(2, -\frac{14}{3}\right)\textmd{, }f''(x) > 0\textmd{, hence it is a minimum point.}2. The equation of a curve is y = (3 - 2x)^{3} + 24x.
(a) Find the expressions for \frac{dy}{dx} and \frac{d^{2}y}{dx^{2}}.
Let’s start by finding \frac{dy}{dx},
y = (3 - 2x)^{3} + 24x\frac{dy}{dx} = (3)(-2)(3 - 2x)^{2} + 24\frac{dy}{dx} = -6(3 - 2x)^{2} + 24Now let’s find \frac{d^{2}y}{dx^{2}},
\frac{dy}{dx} = -6(3 - 2x)^{2} + 24\frac{d^{2}y}{dx^{2}} = (-6)(2)(3 - 2x)\frac{d^{2}y}{dx^{2}} = -12(3 - 2x)\frac{d^{2}y}{dx^{2}} = -36 + 24xTherefore, the final answer is,
\frac{dy}{dx} = -6(3 - 2x)^{2} + 24\ \ \ \ \ \ \ \ \frac{d^{2}y}{dx^{2}} = -36 + 24x(b) Find the coordinates of each of the stationary point on the curve.
\frac{dy}{dx} = -6(3 - 2x)^{2} + 24At a stationary point \frac{dy}{dx} = 0,
-6(3 - 2x)^{2} + 24 = 0Solve for x,
6(3 - 2x)^{2} = 24Divide both sides by 6,
(3 - 2x)^{2} = \frac{24}{6}(3 - 2x)^{2} = 4Take the square root of both sides,
\sqrt{(3 - 2x)^{2}} = \pm \sqrt{4}3 - 2x = \pm 2Make x the subject of the formula,
3 - 2x = \pm 22x = 3 \pm 2x = \frac{3}{2} \pm \frac{2}{2}x = \frac{3}{2} \pm 1x = \frac{3}{2} - 1\ \ \ \ \ \ \ \ x = \frac{3}{2} + 1x = \frac{1}{2}\ \ \ \ \ \ \ \ x = \frac{5}{2}Substitute the x-coordinates into the original equation to find the y-coordinates,
y = (3 - 2x)^{3} + 24x\textmd{at } x = \frac{1}{2}\ \ \ \ \ \ \ \ \textmd{at } x = \frac{5}{2}y = \left(3 - 2\left(\frac{1}{2}\right)\right)^{3} + 24\left(\frac{1}{2}\right)\ \ \ \ \ \ \ \ y = \left(3 - 2\left(\frac{5}{2}\right)\right)^{3} + 24\left(\frac{5}{2}\right)y = 20\ \ \ \ \ \ \ \ y = 52Therefore, the coordinates of the stationary points are,
\left(\frac{1}{2}, 20\right) \left(\frac{5}{2}, 52\right)(c) Determine the nature of the stationary points.
To determine the nature of the stationary points, we use the second derivative,
\frac{d^{2}y}{dx^{2}} = -36 + 24xSubstitute the x-coordinates of the stationary points into the second derivative,
\frac{d^{2}y}{dx^{2}} = -36 + 24x\textmd{at } \left(\frac{1}{2}, 20\right)\ \ \ \ \ \ \ \ \textmd{at } \left(\frac{5}{2}, 52\right)\frac{d^{2}y}{dx^{2}} = -36 + 24\left(\frac{1}{2}\right)\ \ \ \ \ \ \ \ \frac{d^{2}y}{dx^{2}} = -36 + 24\left(\frac{5}{2}\right)\frac{d^{2}y}{dx^{2}} = -24\ \ \ \ \ \ \ \ \frac{d^{2}y}{dx^{2}} = 24\frac{d^{2}y}{dx^{2}} < 0 \textmd{ hence maximum point}\ \ \ \ \ \ \ \ \frac{d^{2}y}{dx^{2}} > 0 \textmd{ hence minimum point}Therefore, the final answer is,
\textmd{At }\left(\frac{1}{2}, 20\right)\textmd{, }\frac{d^{2}y}{dx^{2}} < 0\textmd{, hence it is a maximum point.}\textmd{At }\left(\frac{1}{2}, 20\right)\textmd{, }\frac{d^{2}y}{dx^{2}} > 0\textmd{, hence it is a minimum point.}