Pure Maths 3

3.3 Trigonometry - Easy

Subject: Mathematics

Syllabus Code: 9709

Level: A2 Level

Component: Pure Mathematics 3

Topic: 3.3 Trigonometry

Difficulty: **Easy**

Questions

- 1. (a) Express $\sqrt{6}\cos\theta + 3\sin\theta$ in the form $R\cos(\theta \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$. State the exact value of R and give α correct to 2 decimal places. (9709/31/O/N/20 number 6)
 - (b) Hence solve the equation $\sqrt{6}\cos\frac{1}{3}x + 3\sin\frac{1}{3}x = 2.5$, for $0^{\circ} < x < 360^{\circ}$.
- 2. (a) Show that the equation $\tan (\theta + 60^{\circ}) = 2 \cot \theta$ can be written in the form

$$\tan^2\theta + 3\sqrt{3}\tan\theta - 2 = 0$$

(9709/32/O/N/20 number 4)

- (b) Hence solve the equation $\tan (\theta + 60^{\circ}) = 2 \cot \theta$, for $0^{\circ} < \theta < 180^{\circ}$.
- 3. (a) Given that $\cos(x-30^\circ) = 2\sin(x+30^\circ)$, show that $\tan x = \frac{2-\sqrt{3}}{1-2\sqrt{3}}$. (9709/31/M/J/21 number 3)
 - (b) Hence solve the equation

$$\cos(x - 30^\circ) = 2\sin(x + 30^\circ)$$

for $0^{\circ} < x < 360^{\circ}$.

- 4. (a) By first expanding $\tan(2\theta+2\theta)$, show that the equation $\tan 4\theta = \frac{1}{2}\tan \theta$ may be expressed as $\tan^4\theta + 2\tan^2\theta 7 = 0$. (9709/33/M/J/21 number 5)
 - (b) Hence solve the equation $\tan 4\theta = \frac{1}{2} \tan \theta$, for $0^{\circ} < \theta < 180^{\circ}$
- 5. (a) Express $5\sin x 3\cos x$ in the form $R\sin x \alpha$, where R>0 and $0<\alpha<\frac{1}{2}\pi$. Give the exact value of R and give α correct to 2 decimal places. (9709/31/O/N/21 number 2)
 - (b) Hence state the greatest and least possible values of $(5 \sin x 3 \cos x)^2$.
- 6. (a) Show that the equation

$$\cot 2\theta + \cot \theta = 2$$

can be expressed as a quadratic in $\tan \theta$. (9709/31/O/N/21 number 5)

- (b) Hence solve the equation $\cot 2\theta + \cot \theta = 2$, for $0 < \theta < \pi$, giving your answers correct to 3 decimal places.
- 7. (a) Prove the identity $\cos 4\theta + 4\cos 2\theta + 3 \equiv 8\cos^4 \theta$. (9709/31/O/N/22 number 6)
 - (b) Hence solve the equation $\cos 4\theta + 4\cos 2\theta = 4$, for $0^{\circ} < \theta < 180^{\circ}$.
- 8. (a) Express $5\sin\theta+12\cos\theta$ in the form $R\cos(\theta-\alpha)$, where R>0 and $0<\alpha<\frac{1}{2}\pi$. (9709/32/F/M/23 number 6)
 - (b) Hence solve the equation $5\sin 2x + 12\cos 2x = 6$, for $0 \le x \le \pi$.
- 9. (a) Show that the equation $\sin 2\theta + \cos 2\theta = 2\sin^2 \theta$ can be expressed in the form

$$\cos^2\theta + 2\sin\theta\cos\theta - 3\sin^2\theta = 0$$

(9709/31/M/J/23 number 4)

- (b) Hence solve the equation $\sin 2\theta + \cos 2\theta = 2\sin^2 \theta$, for $0^{\circ} < \theta < 180^{\circ}$
- 10. (a) Express $3\cos x + 2\cos (x 60^\circ)$ in the form $R\cos(x \alpha)$, where R > 0 and $0^\circ < \alpha < 90^\circ$. State the exact value of R and give α correct to 2 decimal places. (9709/33/M/J/23 number 6)
 - (b) Hence solve the equation

$$3\cos 2\theta + 2\cos (2\theta - 60^{\circ}) = 2.5$$

for $0^{\circ} < \theta < 180^{\circ}$.

Answers

1. (a) Express $\sqrt{6}\cos\theta + 3\sin\theta$ in the form $R\cos(\theta - \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$. State the exact value of R and give α correct to 2 decimal places. (9709/31/O/N/20 number 6)

$$\sqrt{6}\cos\theta + 3\sin\theta$$

Let's start by finding R,

$$R = \sqrt{\sqrt{6}^2 + 3^2}$$
$$R = \sqrt{15}$$

Now let's find α ,

$$\alpha = \arctan\left(\frac{3}{\sqrt{6}}\right)$$
$$\alpha = 50.77^{\circ}$$

Therefore, the final answer is,

$$\sqrt{6}\cos\theta + 3\sin\theta = \sqrt{15}\cos(\theta - 50.77^{\circ})$$

(b) Hence solve the equation $\sqrt{6}\cos\frac{1}{3}x + 3\sin\frac{1}{3}x = 2.5$, for $0^{\circ} < x < 360^{\circ}$.

$$\sqrt{6}\cos\frac{1}{3}x + 3\sin\frac{1}{3}x = 2.5$$

Notice how θ has been replaced with $\frac{1}{3}x$,

$$\sqrt{6}\cos\frac{1}{3}x + 3\sin\frac{1}{3}x$$

$$\sqrt{6}\cos\theta + 3\sin\theta$$

This means that,

$$\sqrt{15}\cos\left(\theta - 50.77^{\circ}\right)$$

$$\sqrt{15}\cos\left(\frac{1}{3}x - 50.77^{\circ}\right)$$

Let's solve our equation,

$$\sqrt{15}\cos\left(\frac{1}{3}x - 50.77^{\circ}\right) = 2.5$$

$$\cos\left(\frac{1}{3}x - 50.77^{\circ}\right) = \frac{\sqrt{15}}{6}$$

$$\frac{1}{3}x - 50.77^{\circ} = \arccos\frac{\sqrt{15}}{6}$$

$$P.V = 49.79703411$$

$$\pm P.V + 360n$$

At
$$n = 0$$

 $\pm P.V + 360(0) = (-49.7970, 49.7970)$
 $\frac{1}{3}x - 50.77 = -49.7970$
 $x = 2.9^{\circ}$
 $\frac{1}{3}x - 50.77 = 49.7970$
 $x = 301.7^{\circ}$

Therefore, the final answer is,

$$x = 2.9^{\circ}, 301.7^{\circ}$$

2. (a) Show that the equation $\tan{(\theta+60^\circ)}=2\cot{\theta}$ can be written in the form

$$\tan^2\theta + 3\sqrt{3}\tan\theta - 2 = 0$$

(9709/32/O/N/20 number 4)

$$\tan\left(\theta + 60^{\circ}\right) = 2\cot\theta$$

Rewrite $\cot \theta$ in terms of $\tan \theta$,

$$\tan\left(\theta + 60^{\circ}\right) = \frac{2}{\tan\theta}$$

Use compound angle formula for \tan to expand,

$$\frac{\tan\theta + \tan 60}{1 - \tan\theta \tan 60} = \frac{2}{\tan\theta}$$

Evaluate $\tan 60$.

$$\frac{\tan\theta + \sqrt{3}}{1 - \sqrt{3}\tan\theta} = \frac{2}{\tan\theta}$$

Get rid of the denominators,

$$\tan \theta \left(\tan \theta + \sqrt{3} \right) = 2 \left(1 - \sqrt{3} \tan \theta \right)$$

Expand the brackets,

$$\tan^2\theta + \sqrt{3}\tan\theta = 2 - 2\sqrt{3}\tan\theta$$

Put all the terms on one side and simplify,

$$\tan^2 \theta + \sqrt{3} \tan \theta + 2\sqrt{3} \tan \theta - 2 = 0$$
$$\tan^2 \theta + 3\sqrt{3} \tan \theta - 2 = 0$$

Therefore, the final answer is,

$$\tan^2\theta + 3\sqrt{3}\tan\theta - 2 = 0$$

(b) Hence solve the equation $\tan (\theta + 60^{\circ}) = 2 \cot \theta$, for $0^{\circ} < \theta < 180^{\circ}$.

$$\tan^2\theta + 3\sqrt{3}\tan\theta - 2 = 0$$

Let's solve the quadratic using the quadratic formula,

$$\tan \theta = \frac{-3\sqrt{3} \pm \sqrt{(3\sqrt{3})^2 - 4 \times 1 \times -2}}{2(1)}$$

$$\tan \theta = \frac{-3\sqrt{3} - \sqrt{35}}{2}$$
 $\tan \theta = \frac{-3\sqrt{3} + \sqrt{35}}{2}$

Solve the two trig equations,

$$\theta = \arctan\left(\frac{-3\sqrt{3} - \sqrt{35}}{2}\right) \quad \theta = \arctan\left(\frac{-3\sqrt{3} + \sqrt{35}}{2}\right)$$

$$P.V = -79.7970 \quad P.V = 19.7970$$

$$-79.7970 + 180 = 100.2030$$

Identify the solutions that are within the given interval,

$$\theta = 19.8^{\circ}, 100.2^{\circ}$$

Therefore, the final answer is,

$$\theta = 19.8^{\circ}, 100.2^{\circ}$$

3. (a) Given that $\cos{(x-30^\circ)}=2\sin{(x+30^\circ)}$, show that $\tan{x}=\frac{2-\sqrt{3}}{1-2\sqrt{3}}$. (9709/31/M/J/21 number 3) $\cos{(x-30^\circ)}=2\sin{(x+30^\circ)}$

Use compound angle formulae to expand,

$$\cos x \cos 30 + \sin x \sin 30 = 2 (\sin x \cos 30 + \cos x \sin 30)$$

Evaluate $\cos 30$ and $\sin 30$,

$$\frac{\sqrt{3}}{2}\cos x + \frac{1}{2}\sin x = 2\left(\frac{\sqrt{3}}{2}\sin x + \frac{1}{2}\cos x\right)$$

Expand the bracket,

$$\frac{\sqrt{3}}{2}\cos x + \frac{1}{2}\sin x = \sqrt{3}\sin x + \cos x$$

Group like terms and simplify,

$$\sqrt{3}\sin x - \frac{1}{2}\sin x + \cos x - \frac{\sqrt{3}}{2}\cos x = 0$$
$$\frac{-1 + 2\sqrt{3}}{2}\sin x + \frac{2 - \sqrt{3}}{2}\cos x = 0$$

Divide through by $\cos x$,

$$\frac{-1+2\sqrt{3}}{2}\tan x + \frac{2-\sqrt{3}}{2} = 0$$

Make $\tan x$ the subject of the formula,

$$\frac{-1+2\sqrt{3}}{2}\tan x = -\frac{2-\sqrt{3}}{2}$$

$$\tan x = -\frac{2-\sqrt{3}}{2} \times \frac{2}{-1+2\sqrt{3}}$$

$$\tan x = \frac{-(2-\sqrt{3})}{-1+2\sqrt{3}}$$

Factor out a negative sign in the denominator and simplify,

$$\tan x = \frac{-(2-\sqrt{3})}{-(1-2\sqrt{3})}$$

$$\tan x = \frac{2 - \sqrt{3}}{1 - 2\sqrt{3}}$$

Therefore, the final answer is,

$$\tan x = \frac{2 - \sqrt{3}}{1 - 2\sqrt{3}}$$

(b) Hence solve the equation

$$\cos(x - 30^\circ) = 2\sin(x + 30^\circ)$$

for $0^{\circ} < x < 360^{\circ}$.

$$\tan x = \frac{2 - \sqrt{3}}{1 - 2\sqrt{3}}$$

Our given equation can be written in terms of $\tan x$. Let's solve the $\tan x$ equation,

$$x = \arctan \frac{2 - \sqrt{3}}{1 - 2\sqrt{3}}$$

$$P.V = -6.2060$$

$$P.V + 180(1) = 173.7940$$

$$P.V + 180(2) = 353.7940$$

Identify only the solutions that are within the given interval,

$$x = 173.8^{\circ}, 353.8^{\circ}$$

5

Therefore, the final answer is,

$$x = 173.8^{\circ}, 353.8^{\circ}$$

4. (a) By first expanding $\tan(2\theta+2\theta)$, show that the equation $\tan 4\theta=\frac{1}{2}\tan \theta$ may be expressed as $\tan^4\theta+2\tan^2\theta-7=0$. (9709/33/M/J/21 number 5)

$$\tan 4\theta = \frac{1}{2} \tan \theta$$

Let's start by expanding $tan(2\theta + 2\theta)$ using the compound angle formula,

$$\frac{\tan 2\theta + \tan 2\theta}{1 - \tan 2\theta \tan 2\theta}$$

$$\frac{2\tan 2\theta}{1 - \tan^2 2\theta}$$

Use the double angle formula to expand $\tan 2\theta$,

$$2\left(\frac{2\tan\theta}{1-\tan^2\theta}\right) \div \left[1-\left(\frac{2\tan\theta}{1-\tan^2\theta}\right)^2\right]$$

$$\frac{4\tan\theta}{1-\tan^2\theta} \div \left[1-\frac{4\tan^2\theta}{\left(1-\tan^2\theta\right)^2}\right]$$

$$\frac{4\tan\theta}{1-\tan^2\theta} \div \left[\frac{\left(1-\tan^2\theta\right)^2-4\tan^2\theta}{\left(1-\tan^2\theta\right)^2}\right]$$

$$\frac{4\tan\theta}{1-\tan^2\theta} \div \frac{1-2\tan^2\theta+\tan^4\theta-4\tan^2\theta}{\left(1-\tan^2\theta\right)^2}$$

$$\frac{4\tan\theta}{1-\tan^2\theta} \div \frac{1-6\tan^2\theta+\tan^4\theta}{\left(1-\tan^2\theta\right)^2}$$

$$\frac{4\tan\theta}{1-\tan^2\theta} \times \frac{\left(1-\tan^2\theta\right)^2}{1-6\tan^2\theta+\tan^4\theta}$$

$$\frac{4\tan\theta}{1-\tan^2\theta} \times \frac{\left(1-\tan^2\theta\right)^2}{1-6\tan^2\theta+\tan^4\theta}$$

$$\frac{4\tan\theta\left(1-\tan^2\theta\right)}{1-6\tan^2\theta+\tan^4\theta}$$

This is the complete expansion of $tan(2\theta + 2\theta)$,

$$\tan(2\theta + 2\theta) = \frac{4\tan\theta (1 - \tan^2\theta)}{1 - 6\tan^2\theta + \tan^4\theta}$$
$$\tan 4\theta = \frac{4\tan\theta (1 - \tan^2\theta)}{1 - 6\tan^2\theta + \tan^4\theta}$$

Let's equate this to $\frac{1}{2} \tan \theta$ and express it in the required form,

$$\frac{4\tan\theta\left(1-\tan^2\theta\right)}{1-6\tan^2\theta+\tan^4\theta}=\frac{1}{2}\tan\theta$$

Cross multiply,

$$8\tan\theta \left(1 - \tan^2\theta\right) = \tan\theta \left(1 - 6\tan^2\theta + \tan^4\theta\right)$$

Put all the terms on one side,

$$\tan\theta \left(1 - 6\tan^2\theta + \tan^4\theta\right) - 8\tan\theta \left(1 - \tan^2\theta\right) = 0$$

Factor out $\tan \theta$,

$$\tan \theta \left[\left(1 - 6 \tan^2 \theta + \tan^4 \theta \right) - 8 \left(1 - \tan^2 \theta \right) \right] = 0$$

$$\tan \theta \left[1 - 6 \tan^2 \theta + \tan^4 \theta - 8 + 8 \tan^2 \theta \right] = 0$$

$$\tan \theta \left[\tan^4 \theta + 2 \tan^2 \theta - 7 \right] = 0$$

$$\tan \theta = 0 \quad \tan^4 \theta + 2 \tan^2 \theta - 7 = 0$$

Therefore, the final answer is,

$$\tan^4\theta + 2\tan^2\theta - 7 = 0$$

(b) Hence solve the equation $\tan 4\theta = \frac{1}{2} \tan \theta$, for $0^{\circ} < \theta < 180^{\circ}$

$$\tan^4\theta + 2\tan^2\theta - 7 = 0$$

Let's solve the hidden quadratic using the quadratic formula,

$$\tan^2 \theta = \frac{-2 \pm \sqrt{2^2 - 4 \times 1 \times -7}}{2(1)}$$
$$\tan^2 \theta = -1 \pm 2\sqrt{2}$$
$$\tan^2 \theta = -1 - 2\sqrt{2} \quad \tan^2 \theta = -1 + 2\sqrt{2}$$

Solve the trig equations,

$$\tan \theta = \pm \sqrt{-1 - 2\sqrt{2}} \qquad \tan \theta = \pm \sqrt{-1 + 2\sqrt{2}}$$

$$\tan \theta = \text{no solutions} \qquad \tan \theta = \pm \sqrt{-1 + 2\sqrt{2}}$$

$$\tan \theta = -\sqrt{-1 + 2\sqrt{2}} \qquad \tan \theta = \sqrt{-1 + 2\sqrt{2}}$$

$$\theta = \arctan -\sqrt{-1 + 2\sqrt{2}} \qquad \theta = \arctan \sqrt{-1 + 2\sqrt{2}}$$

$$P.V = -53.5156 \qquad P.V = 53.5156$$

$$-53.5156 + 180 = 126.4844$$

Identify the solutions that are within the given interval,

$$\theta = 53.5^{\circ}, 126.5^{\circ}$$

Therefore, the final answer is,

$$\theta = 53.5^{\circ}, 126.5^{\circ}$$

5. (a) Express $5\sin x - 3\cos x$ in the form $R\sin(x-\alpha)$, where R>0 and $0<\alpha<\frac{1}{2}\pi$. Give the exact value of R and give α correct to 2 decimal places. (9709/31/O/N/21 number 2)

$$5\sin x - 3\cos x$$

Let's start by finding R,

$$R = \sqrt{5^2 + 3^2}$$
$$R = \sqrt{34}$$

Now let's find α ,

$$\alpha = \tan^{-1} \frac{3}{5}$$

$$\alpha = 0.54$$

Therefore, the final answer is,

$$\sqrt{34}\sin(x-0.54)$$

(b) Hence state the greatest and least possible values of $(5 \sin x - 3 \cos x)^2$.

$$5\sin x - 3\cos x = \sqrt{34}\sin(x - 0.54)$$

Notice that have squared the original equation,

$$(5\sin x - 3\cos x)^2 = 34\sin^2(x - 0.54)$$

Since the graph is now squared it means that it doesn't go below the x-axis, so our least value is 0. The greatest value is 34, since our graph starts at 0 and it is stretched in the y-axis by 34 units.

Therefore, the final answer is,

The greatest value is 34 and the least value is 0.

6. (a) Show that the equation

$$\cot 2\theta + \cot \theta = 2$$

can be expressed as a quadratic in $\tan \theta$. (9709/31/O/N/21 number 5)

$$\cot 2\theta + \cot \theta = 2$$

Rewrite $\cot \theta$ in terms of $\tan \theta$,

$$\frac{1}{2\tan\theta} + \frac{1}{\tan\theta} = 2$$

8

Use double angle formula for $\tan \theta$,

$$\frac{1}{\frac{2\tan\theta}{1-\tan^2\theta}} + \frac{1}{\tan\theta} = 2$$

$$\frac{1 - \tan^2 \theta}{2 \tan \theta} + \frac{1}{\tan \theta} = 2$$

Get rid of the denominators,

$$1 - \tan^2 \theta + 2 = 4 \tan \theta$$

$$3 - \tan^2 \theta = 4 \tan \theta$$

Put all the terms on one side,

$$\tan^2\theta + 4\tan\theta - 3 = 0$$

Therefore, the final answer is,

$$\tan^2\theta + 4\tan\theta - 3 = 0$$

(b) Hence solve the equation $\cot 2\theta + \cot \theta = 2$, for $0 < \theta < \pi$, giving your answers correct to 3 decimal places.

$$\tan^2\theta + 4\tan\theta - 3 = 0$$

Let's solve our hidden quadratic using the quadratic formula,

$$\tan\theta = \frac{-4 \pm \sqrt{4^2 - 4 \times 1 \times -3}}{2(1)}$$

$$\tan\theta = -2 \pm \sqrt{7}$$

$$\tan \theta = -2 - \sqrt{7} \qquad \tan \theta = -2 + \sqrt{7}$$

Solve the trig equations,

$$\theta = \tan^{-1} \left(-2 - \sqrt{7} \right) \qquad \theta = \tan^{-1} \left(-2 + \sqrt{7} \right)$$

$$P.V = -1.358781 \qquad P.V = 0.573383$$

$$-1.358781 + \pi = 1.782812$$

Identify the solutions that are within the given interval,

$$\theta = 0.573, 1.783$$

Therefore, the final answer is,

$$\theta = 0.573, 1.783$$

7. (a) Prove the identity $\cos 4\theta + 4\cos 2\theta + 3 \equiv 8\cos^4 \theta$. (9709/31/O/N/22 number 6)

$$\cos 4\theta + 4\cos 2\theta + 3 \equiv 8\cos^4 \theta$$

Let's work from the left-hand side to the right-hand side,

$$\cos 4\theta + 4\cos 2\theta + 3$$

Use the double angle formula for $\cos \theta$ for both $\cos 4\theta$ and $\cos 2\theta$,

$$2\cos^2 2\theta - 1 + 4(2\cos^2 \theta - 1) + 3$$

Use the double angle formula again,

$$2(2\cos^2\theta - 1)^2 - 1 + 8\cos^2\theta - 4 + 3$$

Expand the quadratic,

$$2(4\cos^{4}\theta - 4\cos^{2}\theta + 1) + 8\cos^{2}\theta - 2$$
$$8\cos^{4}\theta - 8\cos^{2}\theta + 2 + 8\cos^{2}\theta - 2$$

Simplify like terms,

$$8\cos^4\theta$$

Therefore, the final answer is,

$$\cos 4\theta + 4\cos 2\theta + 3 \equiv 8\cos^4 \theta$$

(b) Hence solve the equation $\cos 4\theta + 4\cos 2\theta = 4$, for $0^{\circ} < \theta < 180^{\circ}$.

$$\cos 4\theta + 4\cos 2\theta = 4$$

Using our results from part (a), we can rewrite this as,

$$8\cos^4\theta - 3 = 4$$

Solve the trig equation,

$$\cos^4 \theta = \frac{7}{8}$$

$$\cos \theta = \pm \sqrt[4]{\frac{7}{8}}$$

$$\cos \theta = -\sqrt[4]{\frac{7}{8}} \quad \cos \theta = \sqrt[4]{\frac{7}{8}}$$

$$\theta = \cos^{-1} \left(-\sqrt[4]{\frac{7}{8}} \right) \quad \theta = \cos^{-1} \left(\sqrt[4]{\frac{7}{8}} \right)$$

$$\theta = 165.3 \quad \theta = 14.7$$

Therefore, the final answer is,

$$\theta = 14.7^{\circ}, 165.3^{\circ}$$

8. (a) Express $5\sin\theta+12\cos\theta$ in the form $R\cos(\theta-\alpha)$, where R>0 and $0<\alpha<\frac{1}{2}\pi$. (9709/32/F/M/23 number 6)

$$5\sin\theta + 12\cos\theta$$

Let's start by finding R,

$$R = \sqrt{5^2 + 12^2}$$
$$R = 13$$

Now let's find α ,

$$\alpha = \tan^{-1} \left(\frac{5}{12} \right)$$
$$\alpha = 0.395$$

Therefore, the final answer is,

$$13\cos(\theta - 0.395)$$

(b) Hence solve the equation $5\sin 2x + 12\cos 2x = 6$, for $0 \le x \le \pi$.

$$5\sin 2x + 12\cos 2x = 6$$

Notice how the θ has been replaced by 2x,

$$5\sin 2x + 12\cos 2x$$

$$5\sin\theta + 12\cos\theta$$

This means we can rewrite our problem as,

$$13\cos(2x - 0.395) = 6$$

Solve the trig equation,

$$\cos(2x - 0.395) = \frac{6}{13}$$

$$2x - 0.395 = \cos^{-1}\left(\frac{6}{13}\right)$$

$$P.V = 1.091068$$

$$-1.091068 + 2\pi = 5.1921$$

$$2x - 0.395 = 1.091068$$

$$x = 0.743$$

$$2x - 0.395 = 5.1921$$

$$x = 2.79$$

Therefore, the final answer is,

$$x = 0.743, 2.79$$

9. (a) Show that the equation $\sin 2\theta + \cos 2\theta = 2\sin^2 \theta$ can be expressed in the form

$$\cos^2\theta + 2\sin\theta\cos\theta - 3\sin^2\theta = 0$$

(9709/31/M/J/23 number 4)

$$\sin 2\theta + \cos 2\theta = 2\sin^2 \theta$$

Use double angle formulae to simplify,

$$2\sin\theta\cos\theta + \cos^2\theta - \sin^2\theta = 2\sin^2\theta$$

Put all the terms on one side and simplify,

$$\cos^2 \theta + 2\sin \theta \cos \theta - \sin^2 \theta - 2\sin^2 \theta = 0$$
$$\cos^2 \theta + 2\sin \theta \cos \theta - 3\sin^2 \theta = 0$$

Therefore, the final answer is,

$$\cos^2\theta + 2\sin\theta\cos\theta - 3\sin^2\theta = 0$$

(b) Hence solve the equation $\sin 2\theta + \cos 2\theta = 2\sin^2 \theta$, for $0^{\circ} < \theta < 180^{\circ}$

$$\cos^2\theta + 2\sin\theta\cos\theta - 3\sin^2\theta = 0$$

We can factorise this equation,

$$(\cos \theta - \sin \theta)(\cos \theta + 3\sin \theta) = 0$$

Equate each bracket to 0,

$$\cos \theta - \sin \theta = 0$$
 $\cos \theta + 3\sin \theta = 0$

Divide through by $\cos \theta$,

$$1 - \tan \theta = 0 \quad 1 + 3 \tan \theta = 0$$

Solve the trig equations,

$$\tan \theta = 1 \quad \tan \theta = -\frac{1}{3}$$

$$\theta = \tan^{-1} 1 \quad \theta = \tan^{-1} -\frac{1}{3}$$

$$\theta = 45 \quad P.V = -18.4349$$

$$-18.4349 + 180 = 161.5651$$

Identify the solutions that are within the given interval,

$$\theta = 45^{\circ}, 161.6^{\circ}$$

Therefore, the final answer is,

$$\theta = 45^{\circ}, 161.6^{\circ}$$

10. (a) Express $3\cos x + 2\cos (x - 60^\circ)$ in the form $R\cos(x - \alpha)$, where R > 0 and $0^\circ < \alpha < 90^\circ$. State the exact value of R and give α correct to 2 decimal places. (9709/33/M/J/23 number 6)

$$3\cos x + 2\cos\left(x - 60^{\circ}\right)$$

Use the compound angle formula to expand,

$$3\cos x + 2(\cos x \cos 60 + \sin x \sin 60)$$

Evaluate $\cos 60$ and $\sin 60$,

$$3\cos x + 2\left(\frac{1}{2}\cos x + \frac{\sqrt{3}}{2}\sin x\right)$$
$$3\cos x + \cos x + \sqrt{3}\sin x$$
$$4\cos x + \sqrt{3}\sin x$$

Now let's find R,

$$R = \sqrt{4^2 + \left(\sqrt{3}\right)^2}$$

$$R = \sqrt{19}$$

Now let's find α ,

$$\alpha = \tan^{-1} \frac{\sqrt{3}}{4}$$
$$\alpha = 23.41$$

Therefore, the final answer is,

$$\sqrt{19}\cos(x-23.41)$$

(b) Hence solve the equation

$$3\cos 2\theta + 2\cos (2\theta - 60^{\circ}) = 2.5$$

for $0^{\circ} < \theta < 180^{\circ}$.

$$3\cos 2\theta + 2\cos (2\theta - 60^{\circ}) = 2.5$$

Notice how the x has been replaced with 2θ ,

$$3\cos 2\theta + 2\cos (2\theta - 60^\circ)$$
$$3\cos x + 2\cos (x - 60^\circ)$$

This means we can rewrite our equation as,

$$\sqrt{19}\cos(2\theta - 23.41) = 2.5$$

Solve the trig equation,

$$\cos(2\theta - 23.41) = \frac{2.5}{\sqrt{19}}$$

$$2\theta - 23.41 = \cos^{-1}\frac{2.5}{\sqrt{19}}$$

$$P.V = 55.0026$$

$$-55.0026 + 360 = 304.9974$$

$$2\theta - 23.41 = 55.0026$$

$$\theta = 39.2^{\circ}$$

$$2\theta - 23.41 = 304.9974$$

$$\theta = 164.2^{\circ}$$

Therefore, the final answer is,	
	$\theta = 39.2^{\circ}, 164.2^{\circ}$
	14