1.4.1 Circular Measure

In this topic we will learn to:

  • understand the definition of a radian, and use the relationship between radians and degrees
  • use the formulae s=rθs = r\theta and A=12r2θA = \frac{1}{2}r^{2}\theta in solving problems concerning the arc length and sector area of a circle

Radian\textbf{\textcolor{gray}{Radian}}A radian is an angle whose corresponding arc in a circle is equal to the radius of the circle.

Rendered by QuickLaTeX.com

One radian is 57.2958\approx 57.2958 degrees.

To change an angle from radians to degrees, we use the formula,
θ=angle in radians×180π\theta = \textmd{angle in radians} \times \frac{180^{\circ}}{\pi}To change an angle from degrees to radians, we use the formula,
θ=angle in degrees×π180\theta = \textmd{angle in degrees} \times \frac{\pi}{180^{\circ}}Arc Length\textbf{\textcolor{gray}{Arc Length}}An arc is a portion of the circumference of the circle. The length of that portion is called the arc length. Arc length is represented by the symbol, ss. To calculate the arc length, we use the formula,
s=rθs = r\thetaWhere rr is the radius of the circle and θ\theta is the angle of the sector.
Sector Area of a Circle\textbf{\textcolor{gray}{Sector Area of a Circle}}A sector of a circle is a pie shaped portion of a circle, consisting of an arc and its two radii. To calculate the sector area of circle, we use the formula,
A=12r2θA = \frac{1}{2}r^{2}\thetaNote: The formulae for arc length and sector area of a circle take θ\theta in radians NOT in degrees.

Let’s look at some past paper questions on this topic.

1. A sector of a circle of radius rr cm has an area of AA cm2^{2}. Express the perimeter of the sector in terms of rr and AA. (9709/11/M/J/19 number 3)

Rendered by QuickLaTeX.com

Perimeter is the distance around the shape,
P=r+s+rP = r + \textcolor{#2192ff}{s} + rUsing the formula for arc length, substitute ss with rθr\theta,
P=r+rθ+rP = r + \textcolor{#2192ff}{r\theta} + rP=2r+rθP = 2r + r\thetaUse the formula for sector area of a circle, to get rid of θ\theta,
A=12r2θA = \frac{1}{2}r^{2}\thetaMake θ\theta the subject of the formula,
θ=2Ar2\theta = \frac{2A}{r^{2}}Substitute θ\theta,
P=2r+rθP = 2r + r\textcolor{#2192ff}{\theta}P=2r+r(2Ar2)P = 2r + r\left(\textcolor{#2192ff}{\frac{2A}{r^{2}}}\right)Simplify,
P=2r+2ArP = 2r + \frac{2A}{r}Therefore, the final answer is,
P=2r+2ArP = 2r + \frac{2A}{r}2. The diagram shows a sector ABCABC of a circle with center AA and radius rr. The line BDBD is perpendicular to ACAC. Angle CABCAB is θ\theta radians. (9709/11/M/J/22 number 5)

Rendered by QuickLaTeX.com

(a) Given that θ=16π\theta = \frac{1}{6}\pi, find the exact area of BCDBCD in terms of rr.

If you look at the diagram, you will notice that the Area of BCDBCD can be written as,
Area of BCD=Area of Sector ABC Area of triangle ABD\textmd{Area of }BCD = \textmd{Area of Sector }ABC -\textmd{ Area of triangle }ABDUse the formula for sector area of a circle and area of a triangle,
Area of BCD=12r2θ12×BD×AD\textmd{Area of }BCD = \frac{1}{2}r^{2}\theta - \frac{1}{2} \times BD \times ADSubstitute in the value of θ\theta,
Area of BCD=12r2(16π)12×BD×AD\textmd{Area of }BCD = \frac{1}{2}r^{2}\left(\frac{1}{6}\pi\right) - \frac{1}{2} \times BD \times ADSimplify,
Area of BCD=112πr2θ12×BD×AD\textmd{Area of }BCD = \frac{1}{12}\pi r^{2}\theta - \frac{1}{2} \times BD \times ADLet’s evaluate BDBD using Pythagoras,
sinθ=BDr\sin{\theta} = \frac{BD}{r}BD=rsinθBD = r\sin{\theta}Since θ=16\theta = \frac{1}{6}, then,
BD=rsin(16π)BD = r\sin\left(\frac{1}{6}\pi\right)BD=12rBD = \textcolor{#2192ff}{\frac{1}{2}r}Let’s evaluate ADAD using Pythagoras,
cosθ=ADr\cos{\theta} = \frac{AD}{r}AD=rcosθAD = r\cos{\theta}AD=rcos(16π)AD = r\cos\left(\frac{1}{6}\pi\right)AD=32rAD = \textcolor{#0f0}{\frac{\sqrt{3}}{2}r}Let’s substitute BDBD and ADAD,
Area of BCD=112πr2θ12×BD×AD\textmd{Area of }BCD = \frac{1}{12}\pi r^{2}\theta - \frac{1}{2} \times \textcolor{#2192ff}{BD} \times \textcolor{#0f0}{AD}Area of BCD=112πr2θ12×12r×32r\textmd{Area of }BCD = \frac{1}{12}\pi r^{2}\theta - \frac{1}{2} \times \textcolor{#2192ff}{\frac{1}{2}r} \times \textcolor{#0f0}{\frac{\sqrt{3}}{2}r}Simplify,
Area of BCD=112πr2θ38r2\textmd{Area of }BCD = \frac{1}{12}\pi r^{2}\theta - \frac{\sqrt{3}}{8}r^{2}Therefore, the final answer is,
Area of BCD=112πr2θ38r2\textmd{Area of }BCD = \frac{1}{12}\pi r^{2}\theta - \frac{\sqrt{3}}{8}r^{2}(b) Given instead that the length of BDBD is 32r\frac{\sqrt{3}}{2}r, find the exact perimeter of BCDBCD in terms of rr.

Rendered by QuickLaTeX.com

Perimeter is the distance around the shape,
P=BD+CD+arcBCP = \textcolor{#2192ff}{BD} + CD + arcBCSubstitute BDBD with 32r\frac{\sqrt{3}}{2}r,
P=32r+CD+arcBCP = \textcolor{#2192ff}{\frac{\sqrt{3}}{2}r} + CD + arcBCFrom the diagram, we can tell that CD=ACADCD = AC - AD,
P=32r+(ACAD)+arcBCP = \frac{\sqrt{3}}{2}r + \textcolor{#0f0}{(AC - AD)} + arcBCFrom part (a)(a) we know that AD=rcosθAD = r\cos{\theta} and ACAC is the radius,
P=32r+(rrcosθ)+arcBCP = \frac{\sqrt{3}}{2}r + \textcolor{#0f0}{(r - r\cos{\theta})} + arcBCUsing the formula for arc length, substitute arcBCarcBC with rθr\theta,
P=32r+(rrcosθ)+rθP = \frac{\sqrt{3}}{2}r + (r - r\cos{\theta}) + \textcolor{#2192ff}{r\theta}We can use Pythagoras to evaluate θ\theta,
sinθ=BDAB\sin{\theta} = \frac{BD}{AB}Note: The right-angled triangle allows us to use SOHCATOA.
sinθ=32rr\sin{\theta} = \frac{\frac{\sqrt{3}}{2}r}{r}sinθ=32\sin{\theta} = \frac{\sqrt{3}}{2}θ=sin1(32)\theta = \sin^{-1}\left(\frac{\sqrt{3}}{2}\right)θ=13π\theta = \frac{1}{3}\piSubstitute θ\theta,
P=32r+(rrcosθ)+rθP = \frac{\sqrt{3}}{2}r + (r - r\cos{\textcolor{#2192ff}{\theta}}) + r\textcolor{#2192ff}{\theta}P=32r+(rrcos(13π))+r(13π)P = \frac{\sqrt{3}}{2}r + \left(r - r\cos\left(\textcolor{#2192ff}{\frac{1}{3}\pi}\right)\right) + r\left(\textcolor{#2192ff}{\frac{1}{3}\pi}\right)Simplify,
P=32r+(r12r)+13πrP = \frac{\sqrt{3}}{2}r + \left(\textcolor{#0f0}{r - \frac{1}{2}r}\right) + \frac{1}{3}\pi rP=32r+12r+13πrP = \frac{\sqrt{3}}{2}r + \textcolor{#0f0}{\frac{1}{2}r} + \frac{1}{3}\pi rTherefore, the final answer is,
P=32r+12r+13πrP = \frac{\sqrt{3}}{2}r + \frac{1}{2}r + \frac{1}{3}\pi r3. In the diagram, CXDCXD is a semicircle of radius 77 cm with center AA and diameter CDCD. The straight line YABXYABX is perpendicular to CDCD, and the arc CYDCYD is part of a circle with center BB and radius 88 cm. Find the total area of the region enclosed by the two arcs. (9709/12/F/M/19 number 3)

Rendered by QuickLaTeX.com

From the diagram, we can tell that the total area can be written as,
Total Area =Area of semicircle CXD+Area of segment CYD\textmd{Total Area } = \textmd{Area of semicircle }CXD + \textmd{Area of segment }CYDLet’s start by finding the Area of semicircle CXDCXD,
Area of semicircle CXD=12πr2\textmd{Area of semicircle }CXD = \frac{1}{2}\pi r^{2}CXDCXD has a radius of 77 cm,
Area of semicircle CXD=12π(7)2\textmd{Area of semicircle }CXD = \frac{1}{2}\pi (7)^{2}Simplify,
Area of semicircle CXD=492π\textmd{Area of semicircle }CXD = \frac{49}{2}\piLet’s find the Area of segment CYDCYD,
Area of segment CYD=Area of sector CYDArea of triangle BCD\textmd{Area of segment } CYD = \textmd{Area of sector }CYD - \textmd{Area of triangle }BCDUse formulae for sector area of a circle and area of a triangle,
Area of segment CYD=12r2θ12×CD×AB\textmd{Area of segment } CYD = \frac{1}{2}r^{2}\theta - \frac{1}{2} \times CD \times ABSubstitute in rr and CDCD,
Area of segment CYD=12×82×θ12×14×AB\textmd{Area of segment } CYD = \frac{1}{2} \times 8^{2} \times \theta - \frac{1}{2} \times 14 \times ABSimplify,
Area of segment CYD=32θ7×AB\textmd{Area of segment } CYD = 32\theta - 7\times ABLet’s find ABAB using Pythagoras,
a2+b2=c2\textcolor{#2192ff}{a}^{2} + \textcolor{#0f0}{b}^{2} = \textcolor{red}{c}^{2}(AB)2+(AC)2=(BC)2(\textcolor{#2192ff}{AB})^{2} + (\textcolor{#0f0}{AC})^{2} = (\textcolor{red}{BC})^{2}(AB)2+72=82(AB)^{2} + 7^{2} = 8^{2}(AB)2=8272(AB)^{2} = 8^{2} - 7^{2}(AB)2=15(AB)^{2} = 15AB=15AB = \sqrt{15}Substitute ABAB and simplify,
Area of segment CYD=32θ7×AB\textmd{Area of segment } CYD = 32\theta - 7\times \textcolor{#2192ff}{AB}Area of segment CYD=32θ7×15\textmd{Area of segment } CYD = 32\theta - 7\times \textcolor{#2192ff}{\sqrt{15}}Area of segment CYD=32θ715\textmd{Area of segment } CYD = 32\theta - 7\sqrt{15}Let’s find θ\theta,
θ=2ABC\theta = 2ABCsin(ABC)=ACBC\sin(ABC) = \frac{AC}{BC}sin(ABC)=78\sin(ABC) = \frac{7}{8}ABC=sin1(78)ABC = \sin^{-1}\left(\frac{7}{8}\right)θ=2sin1(78)\theta = 2\sin^{-1}\left(\frac{7}{8}\right)Substitute θ\theta and simplify,
Area of segment CYD=32θ715\textmd{Area of segment } CYD = 32\textcolor{#2192ff}{\theta} - 7\sqrt{15}Area of segment CYD=32(2sin1(78))715\textmd{Area of segment } CYD = 32\left(\textcolor{#2192ff}{2\sin^{-1}\left(\frac{7}{8}\right)}\right) - 7\sqrt{15}Area of segment CYD=64sin1(78)715\textmd{Area of segment } CYD = 64\sin^{-1}\left(\frac{7}{8}\right) - 7\sqrt{15}Therefore, the total area is,
Total Area =Area of semicircle CXD+Area of segment CYD\textmd{Total Area } = \textcolor{#2192ff}{\textmd{Area of semicircle }CXD} + \textcolor{#0f0}{\textmd{Area of segment }CYD}Total Area =492π+64sin1(78)715\textmd{Total Area }= \textcolor{#2192ff}{\frac{49}{2}\pi} + \textcolor{#0f0}{64\sin^{-1}\left(\frac{7}{8}\right) - 7\sqrt{15}}Total Area =118.0\textmd{Total Area }= 118.0Note: Remember that θ\theta is in radians, so evaluate any trig functions in radians.

Therefore, the final answer is,
Total Area =118.0\textmd{Total Area }= 118.0