1.5.2 Solving Trigonometric Equations

In this topic we will learn how to:

  • find all the solutions of simple trigonometrical equations lying in a specified interval

To solve trig equations, you have to reduce them to be in terms of one trig function. Once you have achieved that, use one of the formulae below, depending on which trig function you have, to find the all the solutions within the specified interval.


For sinx\sin{x} use the formulae,
P.V(1)n+180nP.V(-1)^{n} + 180nP.V(1)n+πnP.V(-1)^{n} + \pi nWhere P.VP.V is the Principal Value and nn is an integer.

Note: Use the relevant formula depending on whether the solutions should be in degrees or radians.

For cosx\cos{x} use the formulae,
±P.V+360n\pm P.V + 360n±P.V+2πn\pm P.V + 2\pi nWhere P.VP.V is the Principal Value and nn is an integer.

For tanx\tan{x} use the formulae,
P.V+180nP.V + 180nP.V+πnP.V + \pi n
Where P.VP.V is the Principal Value and nn is an integer.


Let’s apply these formulae to past paper questions.

1. Solve by factorising, the equation

6cosθtanθ3cosθ+4tanθ2=06\cos{\theta} \tan{\theta} - 3\cos{\theta} + 4\tan{\theta} - 2 = 0


for 0θ3600^{\circ} \le \theta \le 360^{\circ}. (9709/11/O/N/21 number 3)

6cosθtanθ3cosθ+4tanθ2=06\cos{\theta} \tan{\theta} - 3\cos{\theta} + 4\tan{\theta} - 2 = 0We will factorise by grouping,
6cosθtanθ3cosθ+4tanθ2=0\textcolor{#2192ff}{6\cos{\theta} \tan{\theta} - 3\cos{\theta}} + \textcolor{#0f0}{4\tan{\theta} - 2} = 0Factor out 3cosθ3\cos{\theta} in the first two terms,
3cosθ(2tanθ1)+4tanθ2=0\textcolor{#2192ff}{3\cos{\theta}(2\tan{\theta} - 1)} + \textcolor{#0f0}{4\tan{\theta} - 2} = 0Factor out 22 in the last two terms,
3cosθ(2tanθ1)+2(2tanθ1)=0\textcolor{#2192ff}{3\cos{\theta}(2\tan{\theta} - 1)} + \textcolor{#0f0}{2(2\tan{\theta} - 1)} = 0Factor out 2tanθ12\tan{\theta} - 1 since it is common,
(3cosθ+2)(2tanθ1)=0(3\cos{\theta} + 2)(2\tan{\theta} - 1) = 0Solve for θ\theta,
3cosθ+2=0      2tanθ1=03\cos{\theta} + 2 = 0\ \ \ \ \ \ 2\tan{\theta} - 1 = 03cosθ=2      2tanθ=13\cos{\theta} = -2\ \ \ \ \ \ 2\tan{\theta} = 1cosθ=23      tanθ=12\cos{\theta} = \frac{-2}{3}\ \ \ \ \ \ \tan{\theta} = \frac{1}{2}θ=cos1(23)      θ=tan1(12)\theta = \cos^{-1}\left(\frac{-2}{3}\right)\ \ \ \ \ \ \theta = \tan^{-1}\left(\frac{1}{2}\right)P.V=131.8103149      P.V=26.56505118P.V = 131.8103149\ \ \ \ \ \ P.V = 26.56505118Use the formulae above to check if there are any other solutions within the specified interval,
P.V=131.8103149      P.V=26.56505118P.V = 131.8103149\ \ \ \ \ \ P.V = 26.56505118θ=cos1(23)      θ=tan1(12)\theta = \cos^{-1}\left(\frac{-2}{3}\right)\ \ \ \ \ \ \theta = \tan^{-1}\left(\frac{1}{2}\right)±P.V+360n      P.V+180n\pm P.V + 360n\ \ \ \ \ \ P.V + 180nAt n=1n = 1,
P.V+360(1)=491.81      P.V+180(1)=206.57 P.V + 360(1) = 491.81\ \ \ \ \ \ P.V + 180(1) = 206.57P.V+360(1)=311.81                                                  -P.V + 360(1) = -311.81\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ All the solutions at n=1n = 1 are out of range, so we do not consider them, therefore the final answer is,
θ=26.6,131.8\theta = 26.6^{\circ}, 131.8^{\circ}Note: P.VP.V counts as a solution. It is essentially the solution at n=0n = 0.

2. Solve the equation

tanθ+2sinθtanθ2sinθ=3\frac{\tan{\theta} + 2\sin{\theta}}{\tan{\theta} - 2\sin{\theta}} = 3

for 0<θ<1800^{\circ} < \theta < 180^{\circ}. (9709/12/F/M/21 number 3)
tanθ+2sinθtanθ2sinθ=3\frac{\tan{\theta} + 2\sin{\theta}}{\tan{\theta} - 2\sin{\theta}} = 3Start by getting rid of the denominator,
tanθ+2sinθ=3(tanθ2sinθ)\tan{\theta} + 2\sin{\theta} = 3(\tan{\theta} - 2\sin{\theta})Expand the right-hand side,
tanθ+2sinθ=3tanθ6sinθ\tan{\theta} + 2\sin{\theta} = 3\tan{\theta} - 6\sin{\theta}Put all the terms on one side,
3tanθtanθ6sinθ2sinθ=03\tan{\theta} - \tan{\theta} - 6\sin{\theta} - 2\sin{\theta} = 0Simplify,
2tanθ8sinθ=02\textcolor{#2192ff}{\tan{\theta}} - 8\sin{\theta}= 0Use the identity tanθsinθcosθ\tan{\theta} \equiv \frac{\sin{\theta}}{\cos{\theta}} to replace tanθ\textcolor{#2192ff}{\tan{\theta}},
2(sinθcosθ)8sinθ=02\left(\textcolor{#2192ff}{\frac{\sin{\theta}}{\cos{\theta}}}\right) - 8\sin{\theta}= 02sinθcosθ8sinθ=0\frac{2\sin{\theta}}{\cos{\theta}} - 8\sin{\theta}= 0Factor out 2sinθ2\sin{\theta},
2sinθ(1cosθ4)=02\sin{\theta}\left(\frac{1}{\cos{\theta}} - 4\right)= 0Solve for θ\theta separately,
2sinθ=0      1cosθ4=02\sin{\theta} = 0\ \ \ \ \ \ \frac{1}{\cos{\theta}} - 4 = 0sinθ=0      1cosθ=4\sin{\theta} = 0\ \ \ \ \ \ \frac{1}{\cos{\theta}}= 4sinθ=0      4cosθ=1\sin{\theta} = 0\ \ \ \ \ \ 4\cos{\theta} = 1sinθ=0      cosθ=14\sin{\theta} = 0\ \ \ \ \ \ \cos{\theta} = \frac{1}{4}θ=sin1(0)      θ=cos1(14)\theta = \sin^{-1}(0)\ \ \ \ \ \ \theta = \cos^{-1}\left(\frac{1}{4}\right)P.V=0      P.V=75.52248781P.V = 0\ \ \ \ \ \ P.V = 75.52248781Use the formulae to check if there are any other solutions within range,
P.V=0      P.V=75.52248781P.V = 0\ \ \ \ \ \ P.V = 75.52248781P.V(1)n+180n      ±P.V+360nP.V(-1)^{n} + 180n\ \ \ \ \ \ \pm P.V + 360nAt n=1n = 1,
P.V(1)1+180(1)=180  ±P.V+360(1)=(284.5,435.5)P.V(-1)^{1} + 180(1) = 180\ \ \pm P.V + 360(1) = (284.5, 435.5)All the solutions at n=1n = 1 are out of range, so we do not consider them, therefore, the final ansewr is,
θ=75.5\theta = 75.5^{\circ}Note: If the angle is in degrees, give your answer correct to 11 decimal place. If the angle is in radians, give your answer correct to 33 significant figures.

3. Solve the equation

2cosθ=73cosθ2\cos{\theta} = 7 - \frac{3}{\cos{\theta}}

for 90<θ<90-90^{\circ} < \theta < 90^{\circ} .(9709/12/O/N/21 number 1)
2cosθ=73cosθ2\cos{\theta} = 7 - \frac{3}{\cos{\theta}}Get rid of the denominator,
2cos2θ=7cosθ32\cos^{2}{\theta} = 7\cos{\theta} - 3Put all the terms on one side,
2cos2θ7cosθ+3=02\cos^{2}{\theta} - 7\cos{\theta} + 3 = 0Factorise the quadratic,
2cos2θ7cosθ+3=02\cos^{2}{\theta} - 7\cos{\theta} + 3 = 0(2cosθ1)(cosθ3)=0(2\cos{\theta} - 1)(\cos{\theta} - 3) = 0Solve for θ\theta separately,
2cosθ1=0      cosθ3=02\cos{\theta} - 1 = 0\ \ \ \ \ \ \cos{\theta} - 3 = 02cosθ=1      cosθ=32\cos{\theta} = 1\ \ \ \ \ \ \cos{\theta} = 3cosθ=12      cosθ=3\cos{\theta} = \frac{1}{2}\ \ \ \ \ \ \cos{\theta} = 3θ=cos1(12)      θ=cos1(3)\theta = \cos^{-1}\left(\frac{1}{2}\right)\ \ \ \ \ \ \theta = \cos^{-1}(3)θ=60      θ=no solutions\theta = 60\ \ \ \ \ \ \theta = \textmd{no solutions}Note: The graph of y=cosxy = \cos{x} ranges form 1-1 to 11, so 33 is out of range, hence no solution for θ=cos1(3)\theta = \cos^{-1}(3).
P.V=60P.V = 60Use the formulae to check if there any other solutions within range,
±P.V+360n\pm P.V + 360n At n=0n = 0,
±P.V+360(0)=±60\pm P.V + 360(0) = \pm 60At n=1n = 1,
±P.V+360(1)=(300,420)\pm P.V + 360(1) = (-300, 420)The solutions at n=1n = 1 are out of range so disregard them. Therefore, the final answer is,
θ=60,60\theta = -60^{\circ}, 60^{\circ}4. Solve the equation

45cos2θ4=5\frac{4}{5\cos^{2}{\theta} - 4} = 5

(9709/12/F/M/22 number 7)
45cos2θ4=5\frac{4}{5\cos^{2}{\theta} - 4} = 5Get rid of the denominator,
4=5(5cos2θ4)4 = 5(5\cos^{2}{\theta} - 4)Expand the right-hand side,
4=25cos2θ204 = 25\cos^{2}{\theta} - 20Simplify,
25cos2θ=20+425\cos^{2}{\theta} = 20 + 425cos2θ=2425\cos^{2}{\theta} = 24cos2θ=2425\cos^{2}{\theta} = \frac{24}{25}Take the square root of both sides,
cos2θ=2425\cos^{2}{\theta} = \frac{24}{25}cos2θ=±2425\sqrt{\cos^{2}{\theta}} = \pm\sqrt{\frac{24}{25}}cosθ=±2425\cos{\theta} = \pm\sqrt{\frac{24}{25}}Solve for θ\theta separately,
cosθ=2425      cosθ=2425\cos{\theta} = -\sqrt{\frac{24}{25}}\ \ \ \ \ \ \cos{\theta} = \sqrt{\frac{24}{25}}θ=cos1(2425)      θ=cos1(2425)\theta = \cos^{-1}\left(-\sqrt{\frac{24}{25}}\right)\ \ \ \ \ \ \theta = \cos^{-1}\left(\sqrt{\frac{24}{25}}\right)P.V=168.463041      P.V=11.53695903P.V = 168.463041\ \ \ \ \ \ P.V = 11.53695903Use the formulae to check if there are any other solutions within range,
P.V=168.463041      P.V=11.53695903P.V = 168.463041\ \ \ \ \ \ P.V = 11.53695903±P.V+360n      ±P.V+360n\pm P.V + 360n\ \ \ \ \ \ \pm P.V + 360nAt n=1n = 1,
±P.V+360(1)=528.5      ±P.V+360(1)=371.5\pm P.V + 360(1) = 528.5\ \ \ \ \ \ \pm P.V + 360(1) = 371.5The solutions at n=1n = 1 are out of range, so we do not consider them. Therefore, the final answer is,
θ=11.5,168.5\theta = 11.5^{\circ}, 168.5^{\circ}