1.5.3 Trigonometric Identities

In this topic we will learn how to:

  • use the identities sinθcosθtanθ\frac{\sin{\theta}}{\cos{\theta}} \equiv \tan{\theta} and sin2θ+cos2θ1\sin^{2}{\theta} + \cos^{2}{\theta} \equiv 1

Pythagorean Identities\textbf{\large\textcolor{gray}{Pythagorean Identities}}The two trig identities (also known as pythagorean identities) displayed below will be used in proving other trig identities,
tanθsinθcosθ\tan{\theta} \equiv \frac{\sin{\theta}}{\cos{\theta}}sin2θ+cos2θ1\sin^{2}{\theta} + \cos^{2}{\theta} \equiv 1In some cases, the second trig identity, may be useful in the forms below,
sin2θ1cos2θ\sin^{2}{\theta} \equiv 1 - \cos^{2}{\theta}cos2θ1sin2θ\cos^{2}{\theta} \equiv 1 - \sin^{2}{\theta}General tips for solving trig identities,

  • Work from the more complex side to the less complex side
  • Reduce anything in terms of tanx\tan{x} to be in terms of sinx\sin{x} and cosx\cos{x}
  • Combine any separate fractions into one single fraction
  • Expose yourself to a lot trig identity questions

Let’s look at some past paper questions.

1. Show that,

sinθ+2cosθcosθ2sinθsinθ2cosθcosθ+2sinθ45cos2θ4\frac{\sin{\theta} + 2\cos{\theta}}{\cos{\theta} - 2\sin{\theta}} - \frac{\sin{\theta} - 2\cos{\theta}}{\cos{\theta} + 2\sin{\theta}} \equiv \frac{4}{5\cos^{2}{\theta} - 4}

(9709/12/F/M/22 number 7)

We will work from the left-hand side to the right-hand side,
sinθ+2cosθcosθ2sinθsinθ2cosθcosθ+2sinθ\frac{\sin{\theta} + 2\cos{\theta}}{\cos{\theta} - 2\sin{\theta}} - \frac{\sin{\theta} - 2\cos{\theta}}{\cos{\theta} + 2\sin{\theta}}Compose the two fractions into one fraction,

(sinθ+2cosθ)(cosθ+2sinθ)(sinθ2cosθ)(cosθ2sinθ)(cosθ2sinθ)(cosθ+2sinθ)\frac{(\sin{\theta} + 2\cos{\theta})(\cos{\theta} + 2\sin{\theta}) - (\sin{\theta} - 2\cos{\theta})(\cos{\theta} - 2\sin{\theta})}{(\cos{\theta} - 2\sin{\theta})(\cos{\theta} + 2\sin{\theta})}

Expand the numerator,

sinθcosθ+2sin2θ+2cos2θ+4sinθcosθ(2sin2θ+sinθcosθ2cos2θ+4sinθcosθ)(cosθ2sinθ)(cosθ+2sinθ)\frac{\sin{\theta} \cos{\theta} + 2\sin^{2}{\theta} + 2\cos^{2}{\theta} + 4\sin{\theta} \cos{\theta} - (-2\sin^{2}{\theta} + \sin{\theta} \cos{\theta} - 2\cos^{2}{\theta} + 4\sin{\theta} \cos{\theta})}{(\cos{\theta} - 2\sin{\theta})(\cos{\theta} + 2\sin{\theta})}

Simplify the numerator,

5sinθcosθ+2sin2θ+2cos2θ(2sin2θ2cos2θ+5sinθcosθ)(cosθ2sinθ)(cosθ+2sinθ)\frac{5\sin{\theta} \cos{\theta} + 2\sin^{2}{\theta} + 2\cos^{2}{\theta} - (-2\sin^{2}{\theta} - 2\cos^{2}{\theta} + 5\sin{\theta} \cos{\theta})}{(\cos{\theta} - 2\sin{\theta})(\cos{\theta} + 2\sin{\theta})}

5sinθcosθ+2(sin2θ+cos2θ)(2(sin2θ+cos2θ)+5sinθcosθ)(cosθ2sinθ)(cosθ+2sinθ)\frac{5\sin{\theta} \cos{\theta} + 2(\textcolor{#2192ff}{\sin^{2}{\theta} + \cos^{2}{\theta}}) - (-2(\textcolor{#2192ff}{\sin^{2}{\theta} + \cos^{2}{\theta}}) + 5\sin{\theta} \cos{\theta})}{(\cos{\theta} - 2\sin{\theta})(\cos{\theta} + 2\sin{\theta})}

Use the identity sin2θ+cos2θ1\textcolor{#2192ff}{\sin^{2}{\theta} + \cos^{2}{\theta} \equiv 1},
5sinθcosθ+2(1)(2(1)+5sinθcosθ)(cosθ2sinθ)(cosθ+2sinθ)\frac{5\sin{\theta} \cos{\theta} + 2(\textcolor{#2192ff}{1}) - (-2(\textcolor{#2192ff}{1}) + 5\sin{\theta} \cos{\theta})}{(\cos{\theta} - 2\sin{\theta})(\cos{\theta} + 2\sin{\theta})}5sinθcosθ+2(2+5sinθcosθ)(cosθ2sinθ)(cosθ+2sinθ)\frac{5\sin{\theta} \cos{\theta} + 2 - (-2 + 5\sin{\theta} \cos{\theta})}{(\cos{\theta} - 2\sin{\theta})(\cos{\theta} + 2\sin{\theta})}Finish expanding the numerator,
5sinθcosθ+2+25sinθcosθ(cosθ2sinθ)(cosθ+2sinθ)\frac{5\sin{\theta} \cos{\theta} + 2 + 2 - 5\sin{\theta} \cos{\theta}}{(\cos{\theta} - 2\sin{\theta})(\cos{\theta} + 2\sin{\theta})}Finish simplifying the numerator,
4(cosθ2sinθ)(cosθ+2sinθ)\frac{4}{(\cos{\theta} - 2\sin{\theta})(\cos{\theta} + 2\sin{\theta})}Expand the denominator,
4cos2θ+2sinθcosθ2sinθcosθ4sin2θ\frac{4}{\cos^{2}{\theta} + 2\sin{\theta} \cos{\theta} - 2\sin{\theta} \cos{\theta} - 4\sin^{2}{\theta}}Simplify the denominator,
4cos2θ4sin2θ\frac{4}{\cos^{2}{\theta} - 4\textcolor{#2192ff}{\sin^{2}{\theta}}}Use the identity sin2x1cos2x\textcolor{#2192ff}{\sin^{2}{x} \equiv 1 - \cos^{2}{x}} in the denominator,
4cos2θ4(1cos2θ)\frac{4}{\cos^{2}{\theta} - 4(\textcolor{#2192ff}{1 - \cos^{2}{\theta}})}Simplify the denominator,
4cos2θ4+4cos2θ\frac{4}{\cos^{2}{\theta} - 4 + 4\cos^{2}{\theta}}Group like terms in the denominator,4cos2θ+4cos2θ4\frac{4}{\cos^{2}{\theta} + 4\cos^{2}{\theta} - 4}45cos2θ4\frac{4}{5\cos^{2}{\theta} - 4}Therefore,
sinθ+2cosθcosθ2sinθsinθ2cosθcosθ+2sinθ45cos2θ4\frac{\sin{\theta} + 2\cos{\theta}}{\cos{\theta} - 2\sin{\theta}} - \frac{\sin{\theta} - 2\cos{\theta}}{\cos{\theta} + 2\sin{\theta}} \equiv \frac{4}{5\cos^{2}{\theta} - 4}2. Prove the identity,

1+sinx1sinx1sinx1+sinx4tanxcosx\frac{1 + \sin{x}}{1 - \sin{x}} - \frac{1 - \sin{x}}{1 + \sin{x}} \equiv \frac{4\tan{x}}{\cos{x}}

(9709/12/M/J/21 number 10)

We will work from the left-hand side to the right-hand side,
1+sinx1sinx1sinx1+sinx\frac{1 + \sin{x}}{1 - \sin{x}} - \frac{1 - \sin{x}}{1 + \sin{x}}Compose the two fractions into one fraction,
(1+sinx)2(1sinx)2(1sinx)(1+sinx)\frac{(1 + \sin{x})^{2} - (1 - \sin{x})^{2}}{(1 - \sin{x})(1 + \sin{x})}Expand the numerator,
1+2sinx+sin2x(12sinx+sin2x)(1sinx)(1+sinx)\frac{1 + 2\sin{x} + \sin^{2}{x} - (1 - 2\sin{x} + \sin^{2}{x})}{(1 - \sin{x})(1 + \sin{x})}1+2sinx+sin2x1+2sinxsin2x(1sinx)(1+sinx)\frac{1 + 2\sin{x} + \sin^{2}{x} - 1 + 2\sin{x} - \sin^{2}{x}}{(1 - \sin{x})(1 + \sin{x})}Group like terms and simplify the numerator,
11+2sinx+2sinx+sin2xsin2x(1sinx)(1+sinx)\frac{1 - 1 + 2\sin{x} + 2\sin{x} + \sin^{2}{x} - \sin^{2}{x}}{(1 - \sin{x})(1 + \sin{x})}4sinx(1sinx)(1+sinx)\frac{4\sin{x}}{(1 - \sin{x})(1 + \sin{x})}Expand the denominator,
4sinx1sin2x\frac{4\sin{x}}{\textcolor{#2192ff}{1 - \sin^{2}{x}}}Use the identity cos2x1sin2x\textcolor{#2192ff}{\cos^{2}{x} \equiv 1 - \sin^{2}{x}} in the denominator,
4sinxcos2x\frac{4\sin{x}}{\textcolor{#2192ff}{\cos^{2}{x}}}Simplify,
4sinxcosx×cosx\frac{4\sin{x}}{\cos{x} \times \cos{x}}4sinxcosx×1cosx\frac{4\sin{x}}{\cos{x}} \times \frac{1}{\cos{x}}4tanx×1cosx4\tan{x} \times \frac{1}{\cos{x}}4tanxcosx\frac{4\tan{x}}{\cos{x}}Therefore,
1+sinx1sinx1sinx1+sinx4tanxcosx\frac{1 + \sin{x}}{1 - \sin{x}} - \frac{1 - \sin{x}}{1 + \sin{x}} \equiv \frac{4\tan{x}}{\cos{x}}3. Prove the identity,

12sin2θ1sin2θ=1tan2θ\frac{1 - 2\sin^{2}{\theta}}{1 - \sin^{2}{\theta}} = 1 - \tan^{2}{\theta}

(9709/11/M/J/21 number 7)

We will work from the right-hand side to the left-hand side,
1tan2θ1 - \textcolor{#2192ff}{\tan^{2}{\theta}}Note: In this case, you could just as easily work from left-hand side to right-hand side, however, I chose the opposite because it is easier to simplify tan2θ\tan^{2}{\theta} to be in terms of sinθ\sin{\theta} and cosθ\cos{\theta}.

Use the identity tanθ=sinθcosθ\textcolor{#2192ff}{\tan{\theta} = \frac{\sin{\theta}}{\cos{\theta}}},
1sin2θcos2θ1 - \textcolor{#2192ff}{\frac{\sin^{2}{\theta}}{\cos^{2}{\theta}}}Compose the two terms into one fraction,
cos2θsin2θcos2θ\frac{\textcolor{#0f0}{\cos^{2}{\theta}} - \sin^{2}{\theta}}{\cos^{2}{\theta}}Use the identity cos21sin2θ\textcolor{#0f0}{\cos^{2} \equiv 1 - \sin^{2}{\theta}} in the numerator,
1sin2θsin2θcos2θ\frac{\textcolor{#0f0}{1 - \sin^{2}{\theta}} - \sin^{2}{\theta}}{\cos^{2}{\theta}}Simplify the numerator,
12sin2θcos2θ\frac{1 - 2\sin^{2}{\theta}}{\textcolor{red}{\cos^{2}{\theta}}}Use the identity cos21sin2θ\textcolor{red}{\cos^{2} \equiv 1 - \sin^{2}{\theta}} in the denominator,
12sin2θ1sin2θ\frac{1 - 2\sin^{2}{\theta}}{\textcolor{red}{1 - \sin^{2}{\theta}}}Therefore,
12sin2θ1sin2θ=1tan2θ\frac{1 - 2\sin^{2}{\theta}}{1 - \sin^{2}{\theta}} = 1 - \tan^{2}{\theta}4. Prove the identity,

sin3θsinθ1sin2θ1+sinθtan2θ(1+sin2θ)\frac{\sin^{3}{\theta}}{\sin{\theta} - 1} - \frac{\sin^{2}{\theta}}{1 + \sin{\theta}} \equiv -\tan^{2}{\theta}(1 + \sin^{2}{\theta})

(9709/11/M/J/22 number 4)

We will work from the left-hand side to the right-hand side,
sin3θsinθ1sin2θ1+sinθ\frac{\sin^{3}{\theta}}{\sin{\theta} - 1} - \frac{\sin^{2}{\theta}}{1 + \sin{\theta}}Compose the two fractions into one fraction,
sin3θ(1+sinθ)sin2θ(sinθ1)(sinθ1)(1+sinθ)\frac{\sin^{3}{\theta}(1 + \sin{\theta}) - \sin^{2}{\theta}(\sin{\theta} - 1)}{(\sin{\theta} - 1)(1 + \sin{\theta})}Expand the numerator and simplify,
sin3θ+sin4θsin3θ+sin2θ(sinθ1)(1+sinθ)\frac{\sin^{3}{\theta} + \sin^{4}{\theta} - \sin^{3}{\theta} + \sin^{2}{\theta}}{(\sin{\theta} - 1)(1 + \sin{\theta})}sin4θ+sin2θ(sinθ1)(1+sinθ)\frac{\sin^{4}{\theta} + \sin^{2}{\theta}}{(\sin{\theta} - 1)(1 + \sin{\theta})}Factor out sin2θ\sin^{2}{\theta} in the numerator,
sin2θ(sin2θ+1)(sinθ1)(1+sinθ)\frac{\sin^{2}{\theta}(\sin^{2}{\theta} + 1)}{(\sin{\theta} - 1)(1 + \sin{\theta})}Expand the denominator,
sin2θ(1+sin2θ)sinθ+sin2θ1sinθ\frac{\sin^{2}{\theta}(1 + \sin^{2}{\theta})}{\sin{\theta} + \sin^{2}{\theta} - 1 - \sin{\theta}}Group like terms and simplify in the denominator,
sin2θ(1+sin2θ)sinθsinθ+sin2θ1\frac{\sin^{2}{\theta}(1 + \sin^{2}{\theta})}{\sin{\theta} - \sin{\theta} + \sin^{2}{\theta} - 1}sin2θ(1+sin2θ)sin2θ1\frac{\sin^{2}{\theta}(1 + \sin^{2}{\theta})}{\textcolor{#2192ff}{\sin^{2}{\theta}} - 1}Use the identity sin2θ1cos2θ\textcolor{#2192ff}{\sin^{2}{\theta} \equiv 1 - \cos^{2}{\theta}} in the denominator,
sin2θ(1+sin2θ)1cos2θ1\frac{\sin^{2}{\theta}(1 + \sin^{2}{\theta})}{\textcolor{#2192ff}{1 - \cos^{2}{\theta}} - 1}Simplify the denominator,
sin2θ(1+sin2θ)cos2θ\frac{\sin^{2}{\theta}(1 + \sin^{2}{\theta})}{-\cos^{2}{\theta}}Simplify,
tan2θ(1+sin2θ)-\tan^{2}{\theta}(1 + \sin^{2}{\theta})Therefore,
sin3θsinθ1sin2θ1+sinθtan2θ(1+sin2θ)\frac{\sin^{3}{\theta}}{\sin{\theta} - 1} - \frac{\sin^{2}{\theta}}{1 + \sin{\theta}} \equiv -\tan^{2}{\theta}(1 + \sin^{2}{\theta})