In this topic we will learn how to:
- use the identities cosθsinθ≡tanθ and sin2θ+cos2θ≡1
Pythagorean IdentitiesThe two trig identities (also known as pythagorean identities) displayed below will be used in proving other trig identities,
tanθ≡cosθsinθsin2θ+cos2θ≡1In some cases, the second trig identity, may be useful in the forms below,
sin2θ≡1−cos2θcos2θ≡1−sin2θGeneral tips for solving trig identities,
- Work from the more complex side to the less complex side
- Reduce anything in terms of tanx to be in terms of sinx and cosx
- Combine any separate fractions into one single fraction
- Expose yourself to a lot trig identity questions
Let’s look at some past paper questions.
1. Show that,
cosθ−2sinθsinθ+2cosθ−cosθ+2sinθsinθ−2cosθ≡5cos2θ−44
(9709/12/F/M/22 number 7)
We will work from the left-hand side to the right-hand side,
cosθ−2sinθsinθ+2cosθ−cosθ+2sinθsinθ−2cosθCompose the two fractions into one fraction,
(cosθ−2sinθ)(cosθ+2sinθ)(sinθ+2cosθ)(cosθ+2sinθ)−(sinθ−2cosθ)(cosθ−2sinθ)
Expand the numerator,
(cosθ−2sinθ)(cosθ+2sinθ)sinθcosθ+2sin2θ+2cos2θ+4sinθcosθ−(−2sin2θ+sinθcosθ−2cos2θ+4sinθcosθ)
Simplify the numerator,
(cosθ−2sinθ)(cosθ+2sinθ)5sinθcosθ+2sin2θ+2cos2θ−(−2sin2θ−2cos2θ+5sinθcosθ)
(cosθ−2sinθ)(cosθ+2sinθ)5sinθcosθ+2(sin2θ+cos2θ)−(−2(sin2θ+cos2θ)+5sinθcosθ)
Use the identity sin2θ+cos2θ≡1,
(cosθ−2sinθ)(cosθ+2sinθ)5sinθcosθ+2(1)−(−2(1)+5sinθcosθ)(cosθ−2sinθ)(cosθ+2sinθ)5sinθcosθ+2−(−2+5sinθcosθ)Finish expanding the numerator,
(cosθ−2sinθ)(cosθ+2sinθ)5sinθcosθ+2+2−5sinθcosθFinish simplifying the numerator,
(cosθ−2sinθ)(cosθ+2sinθ)4Expand the denominator,
cos2θ+2sinθcosθ−2sinθcosθ−4sin2θ4Simplify the denominator,
cos2θ−4sin2θ4Use the identity sin2x≡1−cos2x in the denominator,
cos2θ−4(1−cos2θ)4Simplify the denominator,
cos2θ−4+4cos2θ4Group like terms in the denominator,cos2θ+4cos2θ−445cos2θ−44Therefore,
cosθ−2sinθsinθ+2cosθ−cosθ+2sinθsinθ−2cosθ≡5cos2θ−442. Prove the identity,
1−sinx1+sinx−1+sinx1−sinx≡cosx4tanx
(9709/12/M/J/21 number 10)
We will work from the left-hand side to the right-hand side,
1−sinx1+sinx−1+sinx1−sinxCompose the two fractions into one fraction,
(1−sinx)(1+sinx)(1+sinx)2−(1−sinx)2Expand the numerator,
(1−sinx)(1+sinx)1+2sinx+sin2x−(1−2sinx+sin2x)(1−sinx)(1+sinx)1+2sinx+sin2x−1+2sinx−sin2xGroup like terms and simplify the numerator,
(1−sinx)(1+sinx)1−1+2sinx+2sinx+sin2x−sin2x(1−sinx)(1+sinx)4sinxExpand the denominator,
1−sin2x4sinxUse the identity cos2x≡1−sin2x in the denominator,
cos2x4sinxSimplify,
cosx×cosx4sinxcosx4sinx×cosx14tanx×cosx1cosx4tanxTherefore,
1−sinx1+sinx−1+sinx1−sinx≡cosx4tanx3. Prove the identity,
1−sin2θ1−2sin2θ=1−tan2θ
(9709/11/M/J/21 number 7)
We will work from the right-hand side to the left-hand side,
1−tan2θNote: In this case, you could just as easily work from left-hand side to right-hand side, however, I chose the opposite because it is easier to simplify tan2θ to be in terms of sinθ and cosθ.
Use the identity tanθ=cosθsinθ,
1−cos2θsin2θCompose the two terms into one fraction,
cos2θcos2θ−sin2θUse the identity cos2≡1−sin2θ in the numerator,
cos2θ1−sin2θ−sin2θSimplify the numerator,
cos2θ1−2sin2θUse the identity cos2≡1−sin2θ in the denominator,
1−sin2θ1−2sin2θTherefore,
1−sin2θ1−2sin2θ=1−tan2θ4. Prove the identity,
sinθ−1sin3θ−1+sinθsin2θ≡−tan2θ(1+sin2θ)
(9709/11/M/J/22 number 4)
We will work from the left-hand side to the right-hand side,
sinθ−1sin3θ−1+sinθsin2θCompose the two fractions into one fraction,
(sinθ−1)(1+sinθ)sin3θ(1+sinθ)−sin2θ(sinθ−1)Expand the numerator and simplify,
(sinθ−1)(1+sinθ)sin3θ+sin4θ−sin3θ+sin2θ(sinθ−1)(1+sinθ)sin4θ+sin2θFactor out sin2θ in the numerator,
(sinθ−1)(1+sinθ)sin2θ(sin2θ+1)Expand the denominator,
sinθ+sin2θ−1−sinθsin2θ(1+sin2θ)Group like terms and simplify in the denominator,
sinθ−sinθ+sin2θ−1sin2θ(1+sin2θ)sin2θ−1sin2θ(1+sin2θ)Use the identity sin2θ≡1−cos2θ in the denominator,
1−cos2θ−1sin2θ(1+sin2θ)Simplify the denominator,
−cos2θsin2θ(1+sin2θ)Simplify,
−tan2θ(1+sin2θ)Therefore,
sinθ−1sin3θ−1+sinθsin2θ≡−tan2θ(1+sin2θ)