1.5.3 Trigonometric Identities

In this topic we will learn how to:

  • use the identities \frac{\sin{\theta}}{\cos{\theta}} \equiv \tan{\theta} and \sin^{2}{\theta} + \cos^{2}{\theta} \equiv 1

\textbf{\large\textcolor{gray}{Pythagorean Identities}}The two trig identities (also known as pythagorean identities) displayed below will be used in proving other trig identities,
\tan{\theta} \equiv \frac{\sin{\theta}}{\cos{\theta}}\sin^{2}{\theta} + \cos^{2}{\theta} \equiv 1In some cases, the second trig identity, may be useful in the forms below,
\sin^{2}{\theta} \equiv 1 - \cos^{2}{\theta}\cos^{2}{\theta} \equiv 1 - \sin^{2}{\theta}General tips for solving trig identities,

  • Work from the more complex side to the less complex side
  • Reduce anything in terms of \tan{x} to be in terms of \sin{x} and \cos{x}
  • Combine any separate fractions into one single fraction
  • Expose yourself to a lot trig identity questions

Let’s look at some past paper questions.

1. Show that,

\frac{\sin{\theta} + 2\cos{\theta}}{\cos{\theta} - 2\sin{\theta}} - \frac{\sin{\theta} - 2\cos{\theta}}{\cos{\theta} + 2\sin{\theta}} \equiv \frac{4}{5\cos^{2}{\theta} - 4}

(9709/12/F/M/22 number 7)

We will work from the left-hand side to the right-hand side,
\frac{\sin{\theta} + 2\cos{\theta}}{\cos{\theta} - 2\sin{\theta}} - \frac{\sin{\theta} - 2\cos{\theta}}{\cos{\theta} + 2\sin{\theta}}Compose the two fractions into one fraction,

\frac{(\sin{\theta} + 2\cos{\theta})(\cos{\theta} + 2\sin{\theta}) - (\sin{\theta} - 2\cos{\theta})(\cos{\theta} - 2\sin{\theta})}{(\cos{\theta} - 2\sin{\theta})(\cos{\theta} + 2\sin{\theta})}

Expand the numerator,

\frac{\sin{\theta} \cos{\theta} + 2\sin^{2}{\theta} + 2\cos^{2}{\theta} + 4\sin{\theta} \cos{\theta} - (-2\sin^{2}{\theta} + \sin{\theta} \cos{\theta} - 2\cos^{2}{\theta} + 4\sin{\theta} \cos{\theta})}{(\cos{\theta} - 2\sin{\theta})(\cos{\theta} + 2\sin{\theta})}

Simplify the numerator,

\frac{5\sin{\theta} \cos{\theta} + 2\sin^{2}{\theta} + 2\cos^{2}{\theta} - (-2\sin^{2}{\theta} - 2\cos^{2}{\theta} + 5\sin{\theta} \cos{\theta})}{(\cos{\theta} - 2\sin{\theta})(\cos{\theta} + 2\sin{\theta})}

\frac{5\sin{\theta} \cos{\theta} + 2(\textcolor{#2192ff}{\sin^{2}{\theta} + \cos^{2}{\theta}}) - (-2(\textcolor{#2192ff}{\sin^{2}{\theta} + \cos^{2}{\theta}}) + 5\sin{\theta} \cos{\theta})}{(\cos{\theta} - 2\sin{\theta})(\cos{\theta} + 2\sin{\theta})}

Use the identity \textcolor{#2192ff}{\sin^{2}{\theta} + \cos^{2}{\theta} \equiv 1},
\frac{5\sin{\theta} \cos{\theta} + 2(\textcolor{#2192ff}{1}) - (-2(\textcolor{#2192ff}{1}) + 5\sin{\theta} \cos{\theta})}{(\cos{\theta} - 2\sin{\theta})(\cos{\theta} + 2\sin{\theta})}\frac{5\sin{\theta} \cos{\theta} + 2 - (-2 + 5\sin{\theta} \cos{\theta})}{(\cos{\theta} - 2\sin{\theta})(\cos{\theta} + 2\sin{\theta})}Finish expanding the numerator,
\frac{5\sin{\theta} \cos{\theta} + 2 + 2 - 5\sin{\theta} \cos{\theta}}{(\cos{\theta} - 2\sin{\theta})(\cos{\theta} + 2\sin{\theta})}Finish simplifying the numerator,
\frac{4}{(\cos{\theta} - 2\sin{\theta})(\cos{\theta} + 2\sin{\theta})}Expand the denominator,
\frac{4}{\cos^{2}{\theta} + 2\sin{\theta} \cos{\theta} - 2\sin{\theta} \cos{\theta} - 4\sin^{2}{\theta}}Simplify the denominator,
\frac{4}{\cos^{2}{\theta} - 4\textcolor{#2192ff}{\sin^{2}{\theta}}}Use the identity \textcolor{#2192ff}{\sin^{2}{x} \equiv 1 - \cos^{2}{x}} in the denominator,
\frac{4}{\cos^{2}{\theta} - 4(\textcolor{#2192ff}{1 - \cos^{2}{\theta}})}Simplify the denominator,
\frac{4}{\cos^{2}{\theta} - 4 + 4\cos^{2}{\theta}}Group like terms in the denominator,\frac{4}{\cos^{2}{\theta} + 4\cos^{2}{\theta} - 4}\frac{4}{5\cos^{2}{\theta} - 4}Therefore,
\frac{\sin{\theta} + 2\cos{\theta}}{\cos{\theta} - 2\sin{\theta}} - \frac{\sin{\theta} - 2\cos{\theta}}{\cos{\theta} + 2\sin{\theta}} \equiv \frac{4}{5\cos^{2}{\theta} - 4}2. Prove the identity,

\frac{1 + \sin{x}}{1 - \sin{x}} - \frac{1 - \sin{x}}{1 + \sin{x}} \equiv \frac{4\tan{x}}{\cos{x}}

(9709/12/M/J/21 number 10)

We will work from the left-hand side to the right-hand side,
\frac{1 + \sin{x}}{1 - \sin{x}} - \frac{1 - \sin{x}}{1 + \sin{x}}Compose the two fractions into one fraction,
\frac{(1 + \sin{x})^{2} - (1 - \sin{x})^{2}}{(1 - \sin{x})(1 + \sin{x})}Expand the numerator,
\frac{1 + 2\sin{x} + \sin^{2}{x} - (1 - 2\sin{x} + \sin^{2}{x})}{(1 - \sin{x})(1 + \sin{x})}\frac{1 + 2\sin{x} + \sin^{2}{x} - 1 + 2\sin{x} - \sin^{2}{x}}{(1 - \sin{x})(1 + \sin{x})}Group like terms and simplify the numerator,
\frac{1 - 1 + 2\sin{x} + 2\sin{x} + \sin^{2}{x} - \sin^{2}{x}}{(1 - \sin{x})(1 + \sin{x})}\frac{4\sin{x}}{(1 - \sin{x})(1 + \sin{x})}Expand the denominator,
\frac{4\sin{x}}{\textcolor{#2192ff}{1 - \sin^{2}{x}}}Use the identity \textcolor{#2192ff}{\cos^{2}{x} \equiv 1 - \sin^{2}{x}} in the denominator,
\frac{4\sin{x}}{\textcolor{#2192ff}{\cos^{2}{x}}}Simplify,
\frac{4\sin{x}}{\cos{x} \times \cos{x}}\frac{4\sin{x}}{\cos{x}} \times \frac{1}{\cos{x}}4\tan{x} \times \frac{1}{\cos{x}}\frac{4\tan{x}}{\cos{x}}Therefore,
\frac{1 + \sin{x}}{1 - \sin{x}} - \frac{1 - \sin{x}}{1 + \sin{x}} \equiv \frac{4\tan{x}}{\cos{x}}3. Prove the identity,

\frac{1 - 2\sin^{2}{\theta}}{1 - \sin^{2}{\theta}} = 1 - \tan^{2}{\theta}

(9709/11/M/J/21 number 7)

We will work from the right-hand side to the left-hand side,
1 - \textcolor{#2192ff}{\tan^{2}{\theta}}Note: In this case, you could just as easily work from left-hand side to right-hand side, however, I chose the opposite because it is easier to simplify \tan^{2}{\theta} to be in terms of \sin{\theta} and \cos{\theta}.

Use the identity \textcolor{#2192ff}{\tan{\theta} = \frac{\sin{\theta}}{\cos{\theta}}},
1 - \textcolor{#2192ff}{\frac{\sin^{2}{\theta}}{\cos^{2}{\theta}}}Compose the two terms into one fraction,
\frac{\textcolor{#0f0}{\cos^{2}{\theta}} - \sin^{2}{\theta}}{\cos^{2}{\theta}}Use the identity \textcolor{#0f0}{\cos^{2} \equiv 1 - \sin^{2}{\theta}} in the numerator,
\frac{\textcolor{#0f0}{1 - \sin^{2}{\theta}} - \sin^{2}{\theta}}{\cos^{2}{\theta}}Simplify the numerator,
\frac{1 - 2\sin^{2}{\theta}}{\textcolor{red}{\cos^{2}{\theta}}}Use the identity \textcolor{red}{\cos^{2} \equiv 1 - \sin^{2}{\theta}} in the denominator,
\frac{1 - 2\sin^{2}{\theta}}{\textcolor{red}{1 - \sin^{2}{\theta}}}Therefore,
\frac{1 - 2\sin^{2}{\theta}}{1 - \sin^{2}{\theta}} = 1 - \tan^{2}{\theta}4. Prove the identity,

\frac{\sin^{3}{\theta}}{\sin{\theta} - 1} - \frac{\sin^{2}{\theta}}{1 + \sin{\theta}} \equiv -\tan^{2}{\theta}(1 + \sin^{2}{\theta})

(9709/11/M/J/22 number 4)

We will work from the left-hand side to the right-hand side,
\frac{\sin^{3}{\theta}}{\sin{\theta} - 1} - \frac{\sin^{2}{\theta}}{1 + \sin{\theta}}Compose the two fractions into one fraction,
\frac{\sin^{3}{\theta}(1 + \sin{\theta}) - \sin^{2}{\theta}(\sin{\theta} - 1)}{(\sin{\theta} - 1)(1 + \sin{\theta})}Expand the numerator and simplify,
\frac{\sin^{3}{\theta} + \sin^{4}{\theta} - \sin^{3}{\theta} + \sin^{2}{\theta}}{(\sin{\theta} - 1)(1 + \sin{\theta})}\frac{\sin^{4}{\theta} + \sin^{2}{\theta}}{(\sin{\theta} - 1)(1 + \sin{\theta})}Factor out \sin^{2}{\theta} in the numerator,
\frac{\sin^{2}{\theta}(\sin^{2}{\theta} + 1)}{(\sin{\theta} - 1)(1 + \sin{\theta})}Expand the denominator,
\frac{\sin^{2}{\theta}(1 + \sin^{2}{\theta})}{\sin{\theta} + \sin^{2}{\theta} - 1 - \sin{\theta}}Group like terms and simplify in the denominator,
\frac{\sin^{2}{\theta}(1 + \sin^{2}{\theta})}{\sin{\theta} - \sin{\theta} + \sin^{2}{\theta} - 1}\frac{\sin^{2}{\theta}(1 + \sin^{2}{\theta})}{\textcolor{#2192ff}{\sin^{2}{\theta}} - 1}Use the identity \textcolor{#2192ff}{\sin^{2}{\theta} \equiv 1 - \cos^{2}{\theta}} in the denominator,
\frac{\sin^{2}{\theta}(1 + \sin^{2}{\theta})}{\textcolor{#2192ff}{1 - \cos^{2}{\theta}} - 1}Simplify the denominator,
\frac{\sin^{2}{\theta}(1 + \sin^{2}{\theta})}{-\cos^{2}{\theta}}Simplify,
-\tan^{2}{\theta}(1 + \sin^{2}{\theta})Therefore,
\frac{\sin^{3}{\theta}}{\sin{\theta} - 1} - \frac{\sin^{2}{\theta}}{1 + \sin{\theta}} \equiv -\tan^{2}{\theta}(1 + \sin^{2}{\theta})